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De: Juan Andrés Fuenzalida Alarcón

Directores de Tesis: Sebastián Herrero (USACH y ETH Zürich)
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A Danilo y Joaqúın por entender, pero no soltar.
A Devin Townsend por exclamar: “Modular forms and elliptic curves!”
A la Lore por mimarme.

A Dantesco Media por la relación parasocial.
A PokeRogue por la distracción, pero no tanto.
A Leandro Panizzon por sintetizar el metilfenidato.
A el método Kumon por nivelarme.
A las cartas Magic por el gathering.

A todo el resto.

Disculpas

A mis amigos por no apañar.
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Introduction

The study of moduli spaces of abelian varieties is a profound and intricate topic within algebraic
geometry, providing significant insights into the structure and classification of these mathemat-
ical objects. Abelian varieties, which are higher-dimensional generalizations of elliptic curves,
play a crucial role in various branches of mathematics, including number theory, complex anal-
ysis, and certainly algebraic geometry. This work delves into the essential groundwork needed
to elucidate insights on the Kodaira dimension of these moduli spaces.

The concept of Kodaira dimension serves as a fundamental tool in the classification theory
of algebraic varieties, offering a measure of the complexity of the geometry of a variety. For
moduli spaces of abelian varieties, determining the Kodaira dimension helps in understanding
the geometric properties and potential applications of these spaces. In this endeavor, the ap-
pearance of modular forms and their generalizations is almost natural, following a rich history
of both classical and modern approaches; starting with elliptic curves and traditional complex-
analytic modular forms back with Taniyama in 1950, and continuing with hyperkähler surfaces
and global sections of the canonical divisor for a smooth model of a variety, as explored by
Barros et al. in [3].

Building upon foundational concepts, we begin with an overview of abelian varieties, their
moduli, and their associated properties. We then delve into the theory of modular forms and
modular curves to establish a strong background for understanding the relation between mod-
ular forms and complex tori. The final chapter focuses on the main topic, providing detailed
steps for calculating the Kodaira dimension of Ag, supported by significant results from refer-
ential research.

This thesis not only offers a roadmap to a vantage point in the landscape of the geometry of
moduli spaces—specifically the Kodaira dimension of moduli spaces of abelian varieties—but
also showcases the type of mathematical machinery, both existing and developed, needed to
build the roads themselves. We intend for this work to serve as a beacon in this vast and
complex landscape, guiding future research and exploration.
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Chapter 0

Notation and preliminaries

In this short chapter we introduce some notation to be used throughout this work, and some
preliminaries of importance.

0.1 Matrices

For a (square) matrix A, At will denote its transpose, A−t its inverse transpose (since our
rings are fields, therefore commutative), A∗ its Hermitian transpose, and |A| = det(A) its
determinant. A matrix named I will denote an (appropriately sized) identity matrix unless
otherwise specified.

Definition 0.1.1. A subgroup H of G(Q) of a linear algebraic group G over Q is called neat
if the image of H under some faithful represenation G → GLn(Q) is neat. This latter neat
means that the subgroup of C∗ generated by the eigenvalues of the elements in the subgroup of
GLn(Q) is torsion free.

0.2 Tori and lattices

Definition 0.2.1. A lattice over a complex vector space V is a finite subgroup L with rank
dimR V .

Definition 0.2.2. A (complex) torus of dimension g is a quotient X = V/L where V is a
complex vector space, and L is a rank 2g lattice.

Definition 0.2.3. A polarization on a lattice L is a positive definite hermitian form ω with
integer imaginary part (on L).

Proposition 0.2.1. (Riemann relations) A polarization for a lattice over a g-dimensional
complex vector space is uniquely determined by a matrix

W =

(
0 D

−D 0

)
in which D is a g × g positive-integer valued diagonal matrix such that, if P is a matrix with
columns as basis vectors for L:

5



6 CHAPTER 0. NOTATION AND PRELIMINARIES

1. PW−1P t = 0,

2. PW−1P ∗ is positive definite.

A polarization as above in which D = I is called principal.
The diagonal entries of D as a tuple is called the type of the polarization.

Remark 0.2.1. This construction is equivalent to that of the first Chern class of a positive
definite line bundle on a complex torus.

Remark 0.2.2. Amatrix P as above can be normalized as (I, Z), for which Z will be symmetric
and its imaginary part positive definite. It is called the period matrix.

Definition 0.2.4. The dual torus X∨ of X = V/L is defined as V ∨/L∨, where V ∨ = HomC(V,C)
(the space of C-antilinear forms) and L∨ = {l ∈ V ∨ : ⟨l, L⟩ ⊆ Z} with ⟨·, ·⟩ : V ∨ × V → R the
canonical R-bilinear form given by ⟨l, v⟩ = Im l(v).

Definition 0.2.5. The Siegel upper half space Hg is the space of all symmetric g × g
matrices with entries in C and positive definite imaginary part.



Chapter 1

Abelian varietes and their moduli

In this chapter we develop all the necessary theory to study the moduli spaces of (principally
polarized) abelian varieties. We begin by defining them classically.

1.1 Abelian varieties

Definition 1.1.1. An abelian variety (AV) is a complex torus X on which there exists
a polarization ω. A polarized abelian variety is a pair (X,ω). A principally polarized
abelian variety (PPAV) is a polarized abelian variety on which the polarization is principal.

An important equivalence relation amongst AVs are isogenies, which are the morphisms of
the AbVar category.

Definition 1.1.2. A morphism f between abelian varieties X = V/L and Y = U/K is
given by a C-linear map F : V → U such that F (L) ⊆ K. f is called an isogeny if F
is an isomorphism (of vector spaces), and an (abelian variety) isomorphism if furthermore
F (L) = K

Note 1.1.1. This definition prescinds from a polarization, so it is valid for common complex
tori.

Note that isogenies are ”isomorphisms everywhere but finite points”.

Example 1.1.1. Multiplication by an integer n : V → V given by z 7→ n · z is an isomorphism
only when n = ±1.

We’ll call abelian varieties isogenous if there is an isogeny between them, and isomorphic
is there is an isomorphism in the above sense between them.

Remark 1.1.1. We can equivalently define a polarization on a complex torus as an isogeny
X → X∨ induced by a positive definite line bundle.

Proposition 1.1.1. Let X = V/L an abelian variety with polarizationW . Then, it is isogenous
to a principally polarized abelian variety.

7



8 CHAPTER 1. ABELIAN VARIETES AND THEIR MODULI

Proof: Let (X,W ) as in the statement above and (e1, . . . , eg, h1, . . . , hg) a basis of L such
that W is determined by its type matrix D = (d1, d2, . . . , dg). Let L′ a lattice generated by
(e1/d1, . . . , eg/dg, h1, . . . , hg) In this basis,W is a principal polarization in Y = V/L′. So we can
surject cannonically s : X → Y , which is an isogeny since the di are integers making s(L) ⊆ L′.

1.2 Their moduli

To start building the moduli space we want, let us consider the following construction:
Let Z ∈ Hg, i.e. a symmetric g × g matrix with positive definite imaginary part. We can

construct a torus XZ = Cg
/
(Z · Zg + Zg), with principal polarization WZ represented by Z−1

and period matrix (Z, I). So (XZ ,WZ) is a principally polarized abelian variety. We can prove:

Lemma 1.2.1. Let (X,W ) be a g-dimensional PPAV, then there exists Z ∈ Hg such that
(X,W ) is isomorphic to (XZ ,WZ)

Proof: As in remark 0.2.2 we can change the basis of the period matrix of X to get
P = (N, I) with N ∈ Hg.

So, now we have a moduli space of PPAV with a preferred basis, so there could be
isomorphic varieties represented as different points due to choice of basis. Of course, the next
natural step is to find the rules to quotient out this redundancy. This means we have to find
a way to change lattice basis respecting the polarization. With this aim, let’s look at Hg as a
symmetric space. The symplectic group of 2g × 2g matrices is

Sp2g(R) =
{
M ∈ GL2g(R) :M t

(
0 I
−I 0

)
M =

(
0 I
−I 0

)}
.

This group acts on Hg as follows: given Z ∈ Hg and M =

(
A B
C D

)
∈ Sp2g(R)

M(Z) := (AZ +B)(CZ +D)−1 ∈ Hg.

Indeed, we note that AtC and BtD are symmetric and AtD − CtB = I. So

0 = (CZ +D)t(M(Z)−M(Z)t)(CZ +D)

= (M(Z)−M(Z)t)

proving symmetry, and in the same fashion

(CZ +D)tIm(M(Z))(CZ +D) = Im(Z) > 0

proving positive definiteness.

We can also prove:
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Lemma 1.2.2. The action of Sp2g(R) on Hg is transitive.

Proof: Since the matrices we’re working with are non-degenerate, we only need to check
that the orbit of iI is Hg. Let Z = X + iY ∈ Hg. There’s an A ∈ GLg(R) such that Y = AAt

(since Y is symmetric and pos. def.). Then, consider

Z = X + iY = X + iAAt

= X(At)−1At + iAAt

= (X(At)−1 + iA)(At)

= (A(iI) +X(At)−1)(0(iI) + (At)−1)−1

=M(iI).

So M =

(
A X(At)−1

0 (At)−1

)
acts on iI mapping it to an arbitrary Z.

We can also calculate the stabilizer of iI as{(
A B
−B A

)
: ABt = BAt, AAt +BBt = I

}
∼= Ug

(the unitary group of degree g) where the block structure comes from

iI =

(
A B
C D

)
(iI) = (B + iA)(D + iC)−1

i(D + iC) = B + iA

−C + iD = B + iA

⇐⇒ A = D,C = −B.

and the presentation is inherited from Sp2g(R) (cf. last page). It is easily seen compact and
isomorphic to the unitary group through A+ iB.

With this, it is clear that Hg
∼= Sp2g(R)/Ug. We can now prove that isomorphisms of PPAV

translate to the action of integer symplectic matrices on the Siegel upper half space.

Theorem 1.2.1. XZ
∼= XZ′ ⇐⇒ ∃M ∈ Sp2g(Z) | Z ′ =M(Z).

Proof: Proving the implication ⇒, let XZ = Cg/L,XZ′ = Cg/L′ PPAVs with period
matrices (Z, I) and (Z ′, I) respectively. Suppose f is such that f(XZ) = XZ′ , i.e.

Q(Z ′, I) = (Z, I)R, (1.1)

with Q ∈Mg(C) representing f in Cg and R ∈M2g(Z) representing it between the basis of the
lattices. Assume

R =

(
A B
C D

)t

,
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then, rewriting (1.1), QZ ′ = ZAt +Bt and Q = ZCt +Dt. With this,

Z ′ = Z ′t = (AtZ +Bt)t(Q−1)t = (AZ +B)(CZ +D)−1,

since At is invertible given that f is an isomorphism. Furthermore, thanks to the principal

polarization of XZ and XZ′ Rt

(
0 I
−I 0

)
R =

(
0 I
−I 0

)
, so M = Rt ∈ Sp2g(Z) is the matrix

we were looking for.
Conversely, we can see that M t is the representation of an isomorphism between XZ and XZ′

in terms of the lattice basis.

With this result, we now know what to quotient out to get the desired moduli space.

Lemma 1.2.3. The isomorphism classes of principally polarized abelian varieties is in bijection
with the elements of

Ag = Hg/Sp2g(Z).

1.3 Structure and properties

The performed construction doesn’t directly show us if there’s convenient structure or algebro-
geometric properties. We now turn our attention to the study of these and their implications.

Thanks to the following theorem by Cartan shown in [5] we can endow Ag with an analytic
space structure inherited from C.

Theorem 1.3.1. Let X be an analytic space, G a group with a properly discontinuous action on
X by biholomorphic transformations, and ρ : X → X/G the quotient projection. The structural
ring sheaf O defined at every open set U ⊆ X/G as

O(U) = {f : U → C|f ◦ ρ is holomorphic in ρ−1(U)}

defines an analytic space structure over X/G.

To apply this theorem, we only have to prove that the action of Sp2g(Z) on Hg is properly
discontinuous. It turns out (and it’s actually more useful) that this is true for any discrete
subgroup of Sp2g(R)

Proposition 1.3.1. Any discrete subgroup G ⊆ Sp2g(R) acts properly and discontinuously on
Hg.

Proof: We have to show that for all compact K1, K2 ⊆ Hg there are at most finitely many
M ∈ G such that M(K1) ∩K2 ̸= ∅. This is immediately true since Hg

∼= Sp2g(R)/Ug and the
projection p : Sp2g(R) → Sp2g(R)/Ug is a proper map because Ug is compact.

With this we have

Theorem 1.3.2. The normal analytic space Ag is a moduli space for principally polarized
abelian varieties.
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This is satisfactory, but still we have a coarse moduli space. This means that there is
no universal family over Ag. To solve this, a widely used approach is to consider additional
structure or information on each variety to further refine the moduli space. In this case, we
consider level n-structures.

Definition 1.3.1. A level n-structure on an abelian variety A = Cg/L is fixing a basis of

H1(A,Z/nZ) ∼= Hom(L,Z/nZ)

Remark 1.3.1. A level n-structure can be “forced” by dividing the period matrix by n.

This (for n ≥ 3) collapses the nontrivial automorphisms that might appear, which would
mean that there are no nontrivial isotropy groups.

Proposition 1.3.2. For n ≥ 3 and X PPAV, then the subgroup of Aut(X) that fixes the lattice
mod n

{γ ∈ Aut(X) : γ(x) ≡ x mod nL ∀x ∈ L}

is trivial.

Proof: By contradiction, suppose 1 ̸= γ ∈ Aut(X) that fixes the lattice mod n. Then, its
order is finite and we can assume it a prime p simply by replacing γ with a power of itself. Then,
1− γ = nφ with φ ∈ End(X). If λ, η nontrivial corresponding eigenvalues of γ, φ respectively,
λ is a pth root of unity and η integer in Q(λ) and we’ll have nη = 1 − λ which by taking the
norm N in Q(λ)/Q yields np−1N(η) = (1− λ)(1− λ2) . . . (1− λp−1) = p as integers, which is a
contradiction since p prime and n ≥ 3.

Since we’ve shown that Hg was a moduli space for PPAV with a basis, we’ll now find a
group with which to quotient in order to identify the isomorphic PPAVs with level n-structure.

Suppose Z,Z ′ ∈ Hg and φ : XZ → XZ′ an isomorphism of PPAVs respecting level n-
structure. Then, as in the proof of thm. 1.2.1, we can represent it through Q and R relative
to Cg and the lattices respectively. We know that R ∈ Sp2g(Z) but by the n-structure condi-
tion of the morphism, the equality with representations is now Q(Z ′/n, I/n) = (Z/n, I/n)R ≡
(Z/n, I/n) mod L, which is to say Rt ≡ I mod n.

Now, let’s take Z ∈ Hg and an R ∈ Sp2g(Z) s.t. R ≡ I mod n. As in the mentioned
proof, we can interpret it as a representation of an isomorphism of PPAVs that respects the
level structure.

The subgroup that contains these matrices is what we’re looking for.

Definition 1.3.2. For n > 1 the principal congruence subgroup Γ(n) ≤ Sp2g(Z) is defined
as

Γ(n) := {M ∈ Sp2g(Z) :M ≡ I mod n} = ker[Sp2g(Z) → Sp2g(Z/nZ)]

Since it is a discrete subgroup, we’ve proven the first half of



12 CHAPTER 1. ABELIAN VARIETES AND THEIR MODULI

Theorem 1.3.3. The normal analytic space Ag(n) := Hg/Γ(n) is a moduli space for principally
polarized abelian varieties with level n-structure. It is a manifold for n ≥ 3.

Proof: Since we’ve proved that n ≥ 3 collapses the nontrivial automorphisms, the action
of Γ(n) is fixed point free, therefore Ag(n) is a manifold.

Lastly, we mention a very important fact crucial for numerous calculations

Theorem 1.3.4. Ag is a quasiprojective variety.

Since we’ve constructed Ag analytically, realizing this is quite difficult. Fortunately, Mum-
ford gives a rather direct algebro-geometric construction of Ag in which he uses GIT methods
to show that it is indeed quasiprojective.



Chapter 2

Modular forms and modular curves

We will now focus a little on the g = 1 case to develop theory on modular forms and modular
curves that can be generalized to higher dimensions. We will loosely follow [6], from where
we’ve taken some proofs.

2.1 Modular forms

Before we start, we have to define some important congruence subgroups that aren’t principal,
namely

Definition 2.1.1.

Γ0(n) :=

{[
a b
c d

]
∈ Sp2(Z) :

[
a b
c d

]
≡

[
∗ ∗
0 ∗

]
(mod n)

}
Definition 2.1.2.

Γ1(n) :=

{[
a b
c d

]
∈ Sp2(Z) :

[
a b
c d

]
≡

[
1 ∗
0 1

]
(mod n)

}
Remark 2.1.1. These subgroups satisfy Γ(n) ⊂ Γ1(n) ⊂ Γ0(n) ⊂ Sp2(Z). More generally,
a congruence subgroup Γ is a subgroup of Sp2g(Z) for which there is a finite n such that
Γ(n) ⊂ Γ

Some useful definitions to speak about modular forms are

Definition 2.1.3. The automorphic factor j : Sp2(Z)×H1 → C is given by (γ, τ) 7→ cτ+d,

where γ =

(
a b
c d

)
.

Definition 2.1.4. The weight k operator [γ]k for functions f : H1 → C is given by
f([γ]k)(τ) = j(γ, τ)−kf(γ(τ)).

In any dimension,

13



14 CHAPTER 2. MODULAR FORMS AND MODULAR CURVES

Definition 2.1.5. Given a congruence subgroup Γ ⊆ Sp2g(Z) and an integer k, a modular
form of weight k with respect to Γ is a holomorphic

F : Hg → C

that for any Z ∈ Hg satisfies the automorphic condition

F (MZ) = det(CZ +D)kF (Z) ∀M =

(
A B
C D

)
∈ Γ.

When g = 1 it is also required that F is holomorphic at the Γ equivalence classes of Q ∪ {∞}.

Definition 2.1.6. The Γ equivalence classes of Q ∪ {∞} in H1 are called the cusps of Γ.

Remark 2.1.2. Being holomorphic at the cusps is equivalent to f [α]k(z) being bounded as
Im(z) → ∞ for all α ∈ Sp2(Z)

Definition 2.1.7. A cusp form is a modular form for which f [α]k has zero constant Fourier
coefficient for all α.

Definition 2.1.8. The space of modular (resp. cusp) forms of weight k with respect to Γ is
denoted Mk(Γ) (resp. Sk(Γ)).

Remark 2.1.3. Note that if −I ∈ Γ, the only odd weighted modular form is the 0 function.

2.2 Modular forms and elliptic curves

It is not irrelevant to define

Definition 2.2.1. An elliptic curve is a nonsingular algebraic curve defined by the polynomial
relation

y2 = x3 + ax+ b.

Equivalently,

Definition 2.2.2. An elliptic curve is an abelian variety with g = 1. I.e., a complex torus
X = C/L with L = τZ+ Z and τ ∈ H1.

Clearly, we are interested in the latter definition, but the first part of this section is dedicated
to proving this equivalence, and from there we will work towards relating these to modular
forms.

Definition 2.2.3. For even k > 2, the Eisenstein series is

Gk(τ) :=
∑

(c,d)̸=(0,0)

1

(cτ + d)k
.

We also define g2(τ) = 60G4(τ), g3(τ) = 140G6(τ).
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It is rather direct to check that

Proposition 2.2.1. The Eisenstein series is a modular form of weight k

Proof: Gk(τ) is holomorphic since it is absolutely convergent, and uniformly convergent
on compact subsets of H1. Indeed, it is dominated by an absolutely convergent function, and
to check for uniform convergence on H1 consider

|cτ + d|2 = ∥T · (c, d)t∥2, T =

(
Re(τ) 1
Im(τ) 0

)
where ∥ · ∥ is the usual euclidian norm. Then, by singular value decomposition T = V SW , so
for a radius r

inf
∥(c,d)∥=r

|cτ + d| = inf
∥W (c,d)∥=r

∥V SW (c, d)t∥ = sτ

which is the first (smallest) singular value, which as a funtion of τ is continuous and does not
vanish for τ ∈ H1. With this we can bound the series outside the radius as∑

∥(c,d)∥>r

|cτ + d|−k ≤
∑

∥(c,d)∥>r

s−kτ (c2 + d2)−k/2

so the remainders converge locally uniformly, therefore the series converges locally uniformly
implying compact convergence and holomorphy.

Absolute convergence allows us to rearrange terms in the series, so the automorphic condi-
tion is easily checked. It also shows holomorphy at infinity since the absolute summands vanish.

Definition 2.2.4. The Weierstrass ℘ function with respect to a lattice L is a mero-
morphic L-periodic function given by

℘(z) =
1

z2
+

∑
ω∈L\{0}

(
1

(z − ω)2
− 1

ω2

)
, ∀z ∈ C : z /∈ L

with double poles at z ∈ L, and its derivative

℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3

Proposition 2.2.2. The functions ℘ and ℘′, generate the the field of meromorphic functions
of C/L. I.e. its meromorphic function field is C(℘, ℘′).

Remark 2.2.1. Since ℘ depends on a lattice L it is usual to write it as ℘L or ℘τ when τ is the
period of L.

Definition 2.2.5. The generalized Eisenstein function is given by

Gk(Λ) =
∑

ω∈Λ\{0}

1

ωk
.

The generalized functions g2 and g3 are defined similarly as before.
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With these definitions we can state an important result that relates modular forms and
elliptic curves, both in the complex-toric and polynomial sense.

Proposition 2.2.3. Let ℘L as before. Then

(a) The Laurent expansion of ℘ is

℘(z) =
1

z2
+

∞∑
n=2, n even

(n+ 1)Gn+2(L)z
n

for all z such that 0 < |z| < inf{|w| : w ∈ L \ {0}}.

(b) The functions ℘ and ℘′ satisfy the relation

(℘′(z))2 = 4(℘(z))3 − g2(L)℘(z)− g3(L)

where g2(L) = 60G4(L) and g3(L) = 140G6(L).

(c) Let L = ω1Z+ ω2Z and let ω3 = ω1 + ω2. Then the cubic equation satisfied by ℘ and ℘′,
y2 = 4x3 − g2(L)x− g3(L), can be written as

y2 = 4(x− e1)(x− e2)(x− e3), ei = ℘(ωi/2) for i = 1, 2, 3.

This equation is nonsingular, meaning its right side has distinct roots.

Proof: We will prove (b) as it is the most important part of the propositions for our
endeavor.

Using (a) we can directly calculate (℘′(z))2 − 4(℘(z))3 − g2(L)℘(z) − g3(L) = O(z2) but
remember that these are holomorphic and L-periodic, which implies that it’s bounded then
constant, then 0 since O(z2) → 0 when z → 0.

This implies that we have a bijection z 7→ (℘L(z), ℘
′
L(z)) from C \L points to elliptic curve

points. We can extend it sending lattice points to the point at infinity. So in sum, for a lattice
L we have a bijection (℘L, ℘

′
L) from the complex torus to an elliptic curve.

Remark 2.2.2. This map also transports the group law from the torus to the curve, and the
classical construction of three points on secant or tangent lines to the curve adding to zero
correlates to the torus addition.

We have shown that, given a lattice, we can find a related elliptic curve. Now, let us show
that

Proposition 2.2.4. Given a nonsingular elliptic curve

E : y2 = 4x3 − a2x− a3, a32 − 27a23 ̸= 0

there exists a lattice L such that a2 = g2(L) and a3 = g3(L).

To prove this proposition, we will need to define
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Definition 2.2.6. The modular invariant j is defined as

j : H1 → C, τ 7→ 1728
(g2(τ))

3

(g2(τ))3 − 27(g3(τ))2

And an important theorem

Theorem 2.2.1. The j invariant is holomorphic, surjective, and invariant under the action of
Sp2(Z).

With an ingenious proof by Cox in [4] (thm. 11.2).
So, we prove prop. 2.2.4 as
Proof: Assuming, a2, a3 ̸= 0, since j is surjective, there’s τ ∈ H1 such that

j(τ) = 1728
(g2(τ))

3

(g2(τ))3 − 27(g3(τ))2
= 1728

a32
a32 − 27a23

this means
a32

g2(τ)3
=

a23
g3(τ)2

So if we take L = z1Z+ z2Z with z1 = τz2, then

g2(L) = z−4
2 g2(τ) and g3(L) = z−6

2 g3(τ).

So we need z2 such that

z−4
2 =

a2
g2(τ)

and z−6
2 =

a3
g3(τ)

.

Given the equality from the j invariant, we choose z2 satisfying z−12
2 =

a32
g2(τ)2

and z−6
2 = ± a3

g3(τ)

with the option to replace z2 with iz2.

In the case of a2 = 0, g2 vanishes at e2πi/3 so the lattice is(
a3

g3(e2πi/3)

)
Le2πi/3 ,

and if a3 = 0, g3 vanishes at i so the lattice is(
a2
g2(i)

)
Li.

2.3 Modular curves

As before, we can construct moduli spaces purely for elliptic curves, and for enhanced elliptic
curves with additional data. In this case, we employ the congruence subgroups Γ0(n),Γ1(n)
and Γ(n). For this, we need
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Definition 2.3.1. The Weil pairing en on the torsion group E[n] = ⟨ω1/n+L, ω2/n+L⟩ is
defined as

en : E[n]× E[n] → µn, (P,Q) 7→ e2πi|γ|/n

where γ is such that [
P
Q

]
= γ

[
ω1/n+ L
ω2/n+ L

]
Remark 2.3.1. en(P,Q) ∈ µn = {z ∈ C zn = 1} \ {1} if E[n] = ⟨P,Q⟩

Definition 2.3.2. We define:

1. An enhanced elliptic curve for Γ0(n) is a pair (E,C) of an elliptic curve and a cyclic
subgroup of E of order n. Two pairs are equivalent when there’s a morphism that respect
these featured subgroups. The set of equivalence classes is denoted S0(n)

2. An enhanced elliptic curve for Γ1(n) is a pair (E,Q) of an elliptic curve and a point
of E of order n. Two pairs are equivalent when there’s a morphism that respect these
featured points. The set of equivalence classes is denoted S1(n)

3. An enhanced elliptic curve for Γ(n) is a pair (E, (P,Q)) of an elliptic curve and
a pair of points of E that generates the n-torsion subgroup E[n] with Weil pairing a
primitive root of unity. Two pairs are equivalent when there’s a morphism that respect
these featured pairs of points. The set of equivalence classes is denoted S(n)

On the other hand, we define

Definition 2.3.3. For a congruence subgroup Γ the modular curve Y (Γ) is the quotient space

Y (Γ) := H1/Γ.

We write Y0(n), Y1(n), Y (n) for the modular curves for the noted respective congruence sub-
groups.

Note 2.3.1. Throughout this section we’ll call the quotient projection π : H1 → H1/Γ = Y (Γ)

Each of these defined moduli spaces and modular curves are in bijection, and proving this
is merely checking that the extra data for the curves match the definition of the congruence
subgroups.

The modular curves Y (Γ) can be endowed with geometric structure becoming Riemann
surfaces that can be compactified into X(Γ). The topology is evident since we’ve proved
that all discrete subgroups of Sp2(Z) act properly and discontinuously. So Y (Γ) is naturally
Hausdorff. Unfortunately this is not enough since there can be (finite) elliptic points

Definition 2.3.4. Let Γ be a congruence subgroup. For each point z ∈ H1, let Γz denote the
isotropy subgroup (stabilizer) of z. A point is called elliptic for Γ if Γz is nontrivial as a
transformation group, i.e., contains more matrices than just I and −I. Its corresponding point
in the modular curve is also called elliptic.
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These points are in some sense dual to the cusps, since to construct charts on Y (Γ) we
have to specially treat elliptic points, and to compactify Y (Γ) by adding the cusps and building
charts on them we go through an analogous process. Let’s start by the former with an important
proposition.

Proposition 2.3.1. The isotropy subgroups Γz are finite cyclic.

This proposition is not trivial, in fact Diamond & Shurman in [6] devote an entire section
(2.3) to proving it. This proof relies on realizing that any isotropy subgroup Γτ must be a
subgroup of Sp2(Z)τ , and that there’s only 2 elliptic points for Sp2(Z), namely, the classes of
i, and the primitive third root of unity.

From the proposition it makes sense to define

Definition 2.3.5. The period hz of z is given by the positive integer

hz := |{±I}Γz/{±I}|

With this, building neighborhoods for points is summarized as follows:
For a point z ∈ H1, find a neighborhood U such that ∀γ ∈ Γ, if γ(U) ∩ U ̸= ∅ then γ ∈ Γz.

Which exists by cor. 2.2.3 in [6]. Then,

1. Use the map δz =
(
1 −z
1 −z

)
that sends z 7→ 0 and z 7→ ∞. The isotropy subgroup

of 0 in the conjugated transformation group (δz{±I}Γδ−1
z )0/{±I} is the conjugation

δz ({±I}Γz/{±I}) δ−1
z so it is finite cyclic and can be identified with integer rotations

about the origin, so δz can be interpreted as “straightening” neighbourhoods of z.

2. Use the map ρz given by ρz(τ) = τhz to send the “straightened” neighbourhoods to C
respecting quotient projection π identifications. This can be interpreted as wrapping the
circular sector around the origin through the hz-th power map.

Since π and ρ identify the same points, there’s an injection φ such that φ ◦ π = ψ := ρ ◦ δz.
φ must also surject, since ψ does, and furthermore φ is a homeomorphism since both π and ψ
are open and continuous.

To check holomorphism of transition maps, for overlapping charts (π(U1), φ1), (π(U2), φ2)
and x in the intersection, checking holomorphy of transition maps reduces to checking holomor-
phy of φ2,1 := φ2 ◦ φ−1

1 |V1,2 in a neighbourhood of φ1(x) in V1,2 := φ1(π(U1) ∩ π(U2)). By the
transitivity of the Γ action, there’s a γ ∈ Γ such that we can write x = π(z1) = π(z2) = π(γz1)
with z1 ∈ U1, z2 ∈ U2. If U1,2 := U1 ∩ γ−1U2, π(U1,2) is a neighbourhood of x, and φ1(π(U1,2))
is a neighbourhood of φ1(x).

Then, assuming φ1(x) = 0 we will apply φ2,1 to q := φ1(x
′) = φ(π(z′))) = ψ(z′) = (δ1z

′)h1
where h1 is the period of z1 for some z ∈ U1,2 If z′2 is such that ψ2(z

′
2) = 0 and h2 its period,

the image is

φ2(x
′) = φ2(π(γ(z

′))) = ψ2(γ(z
′)) which is defined since γ(z′) ∈ U2

= (δ2(γ(z
′)))h2 = ((δ2γδ

−1
1 )(δ1(z

′)))h2

= ((δ2γδ
−1
1 )(q1/h1))h2 .



20 CHAPTER 2. MODULAR FORMS AND MODULAR CURVES

So this could be possibly non holomorphic when τ1 is elliptic, but in that case, τ2 will be
elliptic with the same period. The conjugation (δ2γδ

−1
1 ) above is a diagonal matrix with entries

α, β ∈ C so the map

q 7→
([
α 0
0 β

] (
q1/h

))h

= (α/β)hq

is clearly holomorphic.

To proceed in the compactification process, recall that cusps are equivalence classes of
Q ∪ {∞} so we will construct

X(Γ) := H∗
1/Γ

where H∗
1 = H1 ∪ Q ∪ {∞}. And we will denote the compactification of Y0(n), Y1(n), Y (n) as

X0(n), X1(n), X(n) respectively.

As suggested before, this compactification requires additional treatment. Our first stop is
adding open sets α(Nm ∪ ∞) with α ∈ Sp2(Z) and Nm := {τ ∈ H1 : Im(τ) > m} and the
resultant topology in H∗

1 induces a quotient topology on X(Γ) for which we can extend the
projection into π : H∗

1 → X(Γ). The modular curve with this topology is Hausdorff, connected,
and compact (prop. 2.4.2 in [6]).

The before constructed charts don’t change, so we are only missing charts for cusp neigh-
borhoods. For a cusp s, we can choose a δs ∈ Sp2(Z) that maps s→ ∞. We define the width
hs of s as

hs :=
∣∣Sp2(Z)∞/(δs{±I}Γδ−1

s )∞
∣∣ .

The construction process in this case is as follows

1. Take δs which “rectifies” the neighbourhoods of s and separating equivalent points in
equispaced strips.

2. Take ρ(z) = e2πiz/h which rolls the strip into an infinitely long cylinder and looking
through it in perspective we get a disk with the infinity point at the center.

So, analogously, in this case φ = ρ ◦ δs and there also exists a homeomorphism φ : π(U) → V
where U = δ−1

s (N2 ∪ {∞}) and V = Image(ψ). Still analogously, transition maps are holomor-
phic too.

With these constructions, we’ve now endowed the compact modular curve X(Γ) with a
Riemann surface structure.

2.4 Dimension formulas

In this section we look at several dimension formulas for modular curves, given their Riemann
surface structure.
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2.4.1 Genus

Theorem 2.4.1. Let Γ be a congruence subgroup of Sp2(Z). Let f : X(Γ) → X(1) be the
natural projection, and let d denote its degree. Let ϵ2 and ϵ3 denote the number of elliptic
points of period 2 and 3 in X(Γ), and ϵ∞ the number of cusps of X(Γ). Then the genus of
X(Γ) is

g = 1 +
d

12
− ϵ2

4
− ϵ3

3
− ϵ∞

2
.

Proof: (Sketch) we use the Riemann-Hurwitz formula for f knowing that the genus of
X(1) is 0.

2.4.2 Meromorphic differentials

This subsection relates automorphic forms (a kind of modular form) to the differential structure
of the modular curve.

Definition 2.4.1. An automorphic form f of weight k with respect to Γ is a weight
k Γ-modular form in which the holomorphism requirement is relaxed to meromorphism. The
order of f at a cusp s is defined as νs(f) = ν∞(f [α]k), α(∞) = s where νz(f) at a non
cusp z is the usual order of vanishing of f at z. The set of automorphic forms of weight k with
respect to Γ is denoted Ak(Γ)

Extending this definition of vanishing to the modular curves may not make much sense, so
it requires some workaround. Viewed as a function on X(Γ), the following definitions follow
from examining f ’s Laurent expansion in local coordinates.

Definition 2.4.2. For an automorphic form f of weight k with respect to Γ we define:

1. The order of f at a non-cusp π(z) of period h is

νπ(z)(f) =
νz(f)

h
.

2. The order of f at a cusp π(s) of width h is, for any α ∈ Sp2(Z) such that α(∞) = s:

νπ(s)(f) =

{
νs(f)/2 if (α−1Γα)∞ = ⟨− ( 1 h

0 1 )⟩ and k is odd,

νs(f) otherwise.

Remark 2.4.1. One can see that these orders are integers for regular points, but may be half
or third integers for elliptic points, and half integers for some cusps. Note that the condition
for half-integrality does not depend on f , so cusps that meet this are of interest. Such cusps
are called irregular, and those who don’t are regular.

Definition 2.4.3. Let V open in C and n a natural number. A meromorphic differential
on V of degree n is an element of Ω⊗n(V ) = {f(q)(dq)n : f meromorphic} with q the V -
variable.
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Remark 2.4.2. This is a C vector space with expected sum and scalar multiplication. The
direct sum over all degrees forms the ring Ω(V ) under expected differential multiplication.

A chart change φ : V1 → V2 induces a pullback of meromorphic differentials:

φ∗ (f(q2)(dq2)
n) = f(φ(q1))(φ

′(q1))
n(dq1)

n

i.e., a change of variables. With this we can glue local differentials along a Riemann surface X
so

Definition 2.4.4. A meromorphic differential on X of degree n is a collection of degree
n local meromorphic differentials

(ωj)j∈J ∈
∏
j∈J

Ω⊗n(Vj)

which is compatible in the sense that the pullback of chart changes on each local differential
gives the expected local differential in the changed chart. The set of meromorphic differentials
on X of degree n is denoted Ω⊗n(X) is also a vector space and its sum over n is a ring.

With this, we see that the pullback of the natural projection π : H1 → X(Γ) gives us a
mapping of meromorphic differentials. This is given locally as

π∗(ω)
∣∣
Uj

= ψ∗
j (ωj

∣∣
ψj(Uj)

)

where Uj, ψj are as in the charts we’ve constructed before. Again gluing these differentials,
we get the pullback differential π∗(ω) = f(τ)(dτ)n. One can calculate that this is well defined
globally, with f an automorphic form of weight 2n with respect to Γ.

Through similar calculations we can ultimately prove that

Theorem 2.4.2. Let k ∈ N be even and let Γ be a congruence subgroup of Sp2(Z). The map

ω : Ak(Γ) → Ω⊗k/2(X(Γ))

f 7→ (ωj)j∈J where (ωj) pulls back to f(τ)(dτ)k/2 ∈ Ω⊗k/2(H1)

is an isomorphism of complex vector spaces.

To prove this we again refer the reader to [6] (thm. 3.3.1), where this map is constructed.
This isomorphism is of much importance, and results of this kind are what are used in

higher dimensions to relate moduli spaces and (analogues of) modular forms.
With these forms, we can now define (canonical) divisors to apply all of their rich theory,

and in particular the Riemann-Roch theorem.

Theorem 2.4.3. Let X be a compact Riemann surface of genus g. Let K be a canonical divisor
of X. For any divisor D of degree 0, we have

ℓ(D) = deg(D)− g + 1 + l(K −D),

where ℓ(D) is the dimension of the complete linear system of D.
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We can immediately deduce the following

Corollary 2.4.1. Let X, g, K, and D be as above. Then

(a) ℓ(K) = g.

(b) deg(K) = 2g − 2.

(c) If deg(D) < 0 then ℓ(D) = 0.

(d) If deg(D) > 2g − 2 then ℓ(D) = deg(D)− g + 1.

Using these properties with care, it can be proved that

Theorem 2.4.4. Let k be an even integer. Let Γ be a congruence subgroup of Sp2(Z), g the
genus of X(Γ), ϵ2 the number of elliptic points with period 2, ϵ3 the number of elliptic points
with period 3, and ϵ∞ the number of cusps. Then

dim(Mk(Γ)) =


(k − 1)(g − 1) +

⌊
k
4

⌋
ϵ2 +

⌊
k
3

⌋
ϵ3 +

k
2
ϵ∞ if k ≥ 2,

1 if k = 0,

0 if k < 0,

and

dim(Sk(Γ)) =


(k − 1)(g − 1) +

⌊
k
4

⌋
ϵ2 +

⌊
k
3

⌋
ϵ3 +

(
k
2
− 1

)
ϵ∞ if k ≥ 4,

g if k = 2,

0 if k ≤ 0.

For odd k the argument is modified due to clashes with −I and the absence of period 2
elliptic points, but it is essentially analogous

Theorem 2.4.5. Let k be an odd integer. Let Γ be a congruence subgroup of Sp2(Z). If Γ
contains the negative identity matrix −I then Mk(Γ) = Sk(Γ) = {0}. If −I /∈ Γ, let g be the
genus of X(Γ), ϵ3 the number of elliptic points with period 3, ϵreg∞ the number of regular cusps,
and ϵirr∞ the number of irregular cusps. Then

dim(Mk(Γ)) =

{
(k − 1)(g − 1) +

⌊
k
3

⌋
ϵ3 +

k
2
ϵreg∞ +

(
k−1
2

)
ϵirr∞ if k ≥ 3,

0 if k < 0,

and

dim(Sk(Γ)) =

{
(k − 1)(g − 1) +

⌊
k
3

⌋
ϵ3 +

k−2
2
ϵreg∞ +

(
k−1
2

)
ϵirr∞ if k ≥ 3,

0 if k < 0.

If ϵreg∞ > 2g − 2 then dim(M1(Γ)) = ϵreg∞ /2 and dim(S1(Γ)) = 0. If ϵreg∞ ≤ 2g − 2 then
dim(M1(Γ)) ≥ ϵreg∞ /2 and dim(S1(Γ)) = dim(M1(Γ))− ϵreg∞ /2.

These dimension formulas are the basis for multiple calculations, and the machinery used
to get to them sheds light on general methods to derive results about dimensions in moduli
spaces.
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Chapter 3

Kodaira dimension of Ag

In the same spirit as last chapter, we now review the process to calculate dimensions in the
moduli of principally polarized abelian varieties using general modular forms. In particular,
following [Tai1982] we will prove the following:

Theorem 3.0.1. Ag is of general type for g ≥ 9.

We will now introduce the definitions of plurigenus, Kodaira dimension, and general type
to better aim at the results we want to show.

Definition 3.0.1. The m-th plurigenus of an n-dimensional algebraic variety X over a field
k is

Pm(X) := dimkH
0(X,ω⊗m

X )

where ωX is the canonical line bundle of n-forms.

Definition 3.0.2. The Kodaira dimension of X is −∞ if the plurigenera are all zero, and
the minimum k such that Pm(X)/mk is bounded otherwise.

Remark 3.0.1. The Kodaira dimension can therefore be −∞ or an integer between 0 and n.

Definition 3.0.3. We say a variety is of general type when its Kodaira dimension is maxi-
mal.

3.1 Extending forms

For the rest of this chapter, let Ak = Ag+1,k now denote the space of modular forms of weight
k(g + 1) and

ω =
∧

1≤i≤j≤g

dZij.

Given f(Z) ∈ Ak, its modularity makes f(Z)ω⊗k invariant under Sp2g(Z), so it is a canonical
k-fold form on A0

g : the smooth locus of Ag, which corresponds to non-elliptic fixed points for
g < 3, otherwise the non-singular points. We want to extend these forms to the cusps in a
compactification. We now define

25
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Definition 3.1.1. A modular form f(Z) vanishes at infinity of order m, if for all Fourier-
Jacobi expansions of f(Z):

f(Z) =
∑

θS(τ, w)e
2πitr(SZ), Z =

(
τ w
wt z

)
,

where the block shape of τ is n′ × n′, w is n′ × n, and z is n× n satisfy

min
θS ̸=0

µ(S) = m where µ(S) = min
0 ̸=x∈Zn

xtSx.

θS is the Fourier-Jacobi coefficent with matrix index S as defined in [11] running through n×n
semi-integral, positive or semi-positive matrices

Remark 3.1.1. Every modular form has such a Fourier series thanks to the holomorphy con-
dition for g = 1 and the Koecher principle for g ≥ 2.

We’ll reenact the toroidal compactification construction of Ag, Ag developed in [1]:
Let F = Hn′ be a boundary component of Hg,
N(F ) : the normalizer of F (i.e. the elements that fix F under conjugation),
U(F ) : the center of the unipotent radical of N(F ),
U(F )Z = U(F ) ∩ Sp2g(Z),
D(F ) = F × Cn′×n × U(F )C,
C(F ) : the cone of n× n positive definite symmetric matrices,
{σα} : a GLn(Z)-admissible decomposition of C(F ),
(Hg/U(F )Z)σα : the interior of the closure of Hg/U(F )Z in (D(F )/U(F )Z)σα .

By the main theorem in [1], there’s a compact analytic space Ag and open analytic mor-
phisms πF : (Hg/U(F )Z)σd → Ag such that

1. Ag is an open dense subset of Ag

2. every point of Ag is in the image of the maps πF .

We also define A0
g as the open subset of Ag such that πF are unramified for all F . With

this,

Theorem 3.1.1. f(Z)ω⊗k defines a k-fold canonical differential form on A0
g if f(Z) vanishes

at infinity of order ≥ k.

Proof: We just need to check at Hg/U(F )Z → (Hg/U(F )Z)σd if fω⊗k extends. By thm
4.1.1 in [1] fω⊗k extends if for all Fourier series of f(Z), θS ̸= 0 =⇒ tr(SX) ≥ k for all
integral (semi) positive matrices X.

We can prove the trace restriction thanks to a result by Barnes and Cohn [2]

Lemma 3.1.1. For a fixed S, tr(SX) attains its minimum at rank one X, i.e.,

min
X integral

(semi)positive

tr(SX) = min
X=xtx
0̸=x∈Zn

tr(SX) = µ(S).
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We can reduce the theorem to just checking the coefficients with integer index at the highest
dimensional cusp:

Theorem 3.1.2. For Z =

(
τ w
wt z

)
with the top blocks having g − 1 rows, and the left blocks

having g − 1 columns, f(Z)ω⊗k can be extended to Ā0
g if in the Fourier-Jacobi expansion of

f(Z) over the highest dimensional cusp:

f(Z) =
∑

θm(τ, w)e
2πimz,

θm = 0 for m < k.

Proof: For any Z ∈ Hg, λ ∈ R+ define Zλ ∈ Hg by

(Zλ)jk = Zjk (j, k) ̸= (g, g)

(Zλ)gg = Zgg + iλ.

Consider any Fourier-Jacobi expansion of f(Z)

f(Z) =
∑

θS(τ
′, w′)e2πitr(Sz

′), Z =

(
τ ′ w′

w′t z′

)
,

where the τ ′ block is n′ × n′ and the z′ block is n× n. If minθS ̸=0 µ(S) = l, then

lim
λ→∞

f(Zλ)e
2πiλl =

∑
Snn=l

θS(τ
′, w′)e2πitr(Sz

′).

But if l < k, since θm = 0 for m < k, we have

lim
λ→∞

f(Zλ)e
2πlλl = 0 =⇒

∑
Snn=l

θS(τ
′, w′)e2πitr(Sz

′) = 0

=⇒ θS(τ
′, w′) = 0 for all S such that Snn = l

=⇒ θS(τ
′, w′) = 0 for all S such that µ(S) = l.

Since µ(S) = l, ∃U ∈ GLn(Z) such that S[U ]n,n = l and θS = θS[U ]. This contradicts the

definition of l, hence l ≥ k or f vanishes at infinity of order ≥ k, fω⊗k is extendable to A0
g by

last theorem.

3.2 Dimension formulas

In this section we prove asymptotical relations for the dimension of Ak and the space of Fourier
coefficients.
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Proposition 3.2.1. For a fixed g and large k, dimAk ∼ 2
1
2
(g−1)(g−2)

∏g
j=1

(j−1)!
2j!

Bj[(g+1)k]
1
2
g(g+1)

where Bj’s are Bernoulli numbers:

x

ex − 1
= 1− x

2
+
∑

(−1)j+1Bj
x2j

2j!

Proof: Let Γ(1) = Sp2g(Z)/{±I}, Γ = Γ(1)/Γ(l), Ak(l), Sk(l) : the spaces of Γ(l)-modular
forms and cusp forms of weight k(g + 1) on Hg.

Note that Γ̄ acts on Ak(l) and Sk(l) as follows:

γ∗f(Z) = f(Z)|(CZ +D)|−k(g+1)

for γ =

(
A B
C D

)
∈ Sp2g(Z). Then Ak = Ak(l)

Γ̄ : the modular forms in Ak(l) fixed by Γ̄. As-

suming Γ(l) is neat, we can apply Mumford’s extension of Hirzebruch’s proportionality principle
from [10] to compute

dimSk(l) ∼ dimAk(l) ∼ 2−N−g(g+1)NkkN [Γ(1) : Γ(l)]Vgπ
−N

where N = g(g + 1)/2, and Vg : the Siegel symplectic volume= 2g
2+1πN

∏g
j=1

(j−1)!
2j!

Bj.

To study the dimension of Sk we now apply Hirzebruch’s method of [8]. Note that

dimSk = dimSΓ
k (l) =

1

|Γ|

∑
γ∈Γ

tr (γ∗|Sk(l))

By the Atiyah-Bott fixed point theorem,

tr(γ∗|Sk(l)) = (a polynomial in k of degree ≤ dimFix(γ)).

where Fix(γ) is the space of points fixed by the action of γ. So, for γ ̸= I, tr(γ∗|Sk(l)) doesn’t
contribute to the leading term of dimSk, therefore

dimAk ∼ dimSk ∼
1

[Γ(1) : Γ(l)]
dimSk(l) ∼ 2−N−g(g+1)NkkNVgπ

−N .

Now we look closely at the Fourier coefficients of modular forms at cusps.

Proposition 3.2.2. Suppose f(Z) ∈ Ak and has the Fourier-Jacobi expansion (as in thm.
3.1.2)

f(Z) =
∑

θm(τ, w)e
2πimz, Z =

(
τ w
w z

)
,

at the highest dimensional cusp then θm(τ, w) satisfies the following:

1. θm(τ, w + τn1 + n2) = θm(τ, w)e
−2πim(nt

1τn1+2nt
1w), n1, n2 ∈ Zg−1 i.e., for fixed τ , θm is a

theta function of degree 2m in w.
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2. θm(τ,−w) = θm(τ, w)

3. If γ =

(
A B
C D

)
∈ Sp2g−2(Z), then

θm(γτ, (Cτ +D)−tw) = θm(τ, w)e
2πimw(Cτ+D)−tCw|(Cτ +D)|k(g+1)

Proof: Consider the following matrices and their transformations on the Z blocks:

γ1 =


1g−1 0 0 n2

tn1 1 tn2 0
0 0 1g−1 −n1

0 0 0 1

 : (τ, w, z) 7→ (τ, w + τn1 + n2, z + nt1τn1 + 2nt1w − nt2n1)

γ2 =


Ig−1 0 0 0
0 −1 0 0
0 0 Ig−1 0
0 0 0 −1

 : (τ, w, z) 7→ (τ,−w, z)

γ3 =


A 0 B 0
0 1 0 0
C 0 D 0
0 0 0 1

 : (τ, w, z) 7→ (γτ, (Cτ +D)−tw, z − wt(Cτ +D)−1Cw)

Apply the automorphic condition to these three elements and f to prove (1),(2), and (3)
respectively.

We now define

Definition 3.2.1. H̃m(l) = H̃g,m(l) is the space of holomorphic functions θ(τ, w) on Hg × Cg

such that:

(θ1) θ(τ, w + τn1 + n2) = θ(τ, w)e−2mπi(nt
1τn1+2nt

1w), n1, n2 ∈ Zg

(θ2) θ(τ ′, w′) = θ(τ, w)e2mU
′|Cτ +D|k(g+1)

where (
A B
C D

)
∈ Sp2g(Z)(l)

(τ ′, w′) = ((Aτ +B)(Cτ +D)−1, (Cτ +D)−tw)

U ′ = πiwt(Cτ +D)−1Cw.

By the recent proposition, we see that θm(τ, w) ∈ H̃g−1,m(1)
even.

Let

Θ

[
a
b

]
(τ, w) =

∑
n∈Zg

e2πi(
1
2
(n+a)tτ(n+a)+(n+a)t(w+b))
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with

(τ, w) ∈ Hg × Cg, a, b ∈ 1

2m
Zg.

(the Riemann theta function). It is a known fact that the Riemann theta functions

Θ

[
a
0

]
(2mτ, 2mw) span the Jacobi theta functions of degree 2m by varying a over the set

of representatives of 1
2m

Zg/Zg, so let’s look at

Proposition 3.2.3. For (τ, w) ∈ Hg × Cg, a, a∗ ∈ 1
2m

Zg,
(
A B
C D

)
∈ Sp2g(Z), we have

Θ

[
a∗

0

]
(τ ∗, w∗) = eU

∗
(C(2m)−1τ +D

1
2

∑
a mod Zg

ua∗aΘ

[
a
0

]
(τ, w)

where
(τ ∗, w∗) = (2m(Aτ + 2mB)(Cτ + 2mD)−1, 2mt(Cτ + 2mD)−1w)

U∗ = πitw(Cτ + 2mD)−1Cw

and ua∗a is a constant unitary matrix of degree (2m)g.

Proof: Follows from transformation laws of theta functions

If we define Θ⃗(τ, w) =

(
Θ

[
a
0

]
(2mτ, 2mw)

)
a∈ 1

2m
Zg/Zg

, the next result follows

Corollary 3.2.1. If γ =

(
A B
C D

)
∈ Sp2g(Z) then

Θ⃗(τ ′, w′) = e2mU
′ |Cτ +D|

1
2ρ(γ)Θ⃗(τ, w)

where τ ′, w′, U ′ are the same as in (θ2), ρ(γ) is a unitary representation of γ ∈ Sp2g(Z).

These results play an important role to prove another piece of the puzzle

Proposition 3.2.4. For large k, dim H̃m(1) ∼ (2m)g dimAk

Proof: Assuming that Γ(l) is neat, we compute dim H̃m(1) as follows: let θm(τ, w) ∈ H̃m(l),
then we can write θm as

θm(τ, w) =
∑

f[ a0 ]
(τ)Θ

[
a
0

]
(2mτ, 2mw) = F⃗ (τ)tΘ⃗(τ, w)

where F⃗ (τ) = (f[ a0 ]
(τ)) is a holomorphic vector valued function in τ . By (θ2) and the previous

corollary we have

F⃗ (γτ) = ρ(γ)−tF⃗ (τ)|Cτ +D|k(g+1)−1
2 , γ =

(
A B
C D

)
∈ Γ(l). (3.1)

Now consider the following:
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1. The action of γ ∈ Γ(l) on Hg × C(2m)g given by (τ, w) 7→ (γτ, ρ(γ)−tw), γ ∈ Γ(l) defines

a vector bundle on Ag(l) extendible to a vector bundle Wl on X = Ag(l) of rank (2m)g

by construction.

2. The action of Γ(l) on Hg × C given by (τ, w) 7→ (γτ, |Cτ +D| 12w) defines a line bundle
M on X

3. Let L be the line bundle on X corresponding to the cusp forms of weight k(g + 1).

4. Define Vl = Wl ⊗ L⊗M−1

So, we see that H̃m(l) = Γ(X, Vl)
Indeed, note that relation 3.1 is “almost automorphic” in the sense that if the highlighted

factors disappeared this would be indeed a vector automorphic condition and F⃗ would be a
vector cusp form. So, the sections of the tensor product Vl represent cusp forms (L) with a
ρ(γ)−t factor (Wl) and the inverse of the square root of a |Cτ +D| factor (M−1). Considering
this, and the Riemann-Roch theorem, we have:∑

(−1)i dimH i(X, Vl) = {ch(Vl) · Td(X)}[X]

= (2m)g{ch(L⊗M−1) · Td(X)}[X]

= (2m)g
∑

(−1)i dimH i(X,L⊗M−1).

Extracting the first and last members of this equality, we note that, for big enough k,
Vl ⊗K−1

X and L⊗M−1 ⊗K−1
X are quasi-positive in the sense of Grauert and Riemenschneider

in [7], and by their vanishing theorem, H i(X, Vl) and H
i(L⊗M−1) = 0 for i > 0. So we’re left

with

dim H̃m(l) = dimH0(X, Vl) = dimH0(X,L⊗M−1)(2m)g ∼ (2m)g dimAk(l).

To find dim H̃m(1) recall Γ and consider its action on H̃m(l) by

θ(τ, w) 7→ θ(τ ′, w′)e−2mU ′|Cτ +D|−k(g+1)

with τ ′, w′, U ′, γ are as before.

Replicating the argument in prop. 3.2.1

dim H̃m(1) = dim H̃m(l)
Γ =

1

|Γ|

∑
γ∈Γ

tr(γ∗|H̃m(l))

and tr(γ∗|H̃m(l)) is bounded by (2m)g times a polynomial of degree ≤ dimXγ, showing ulti-
mately that

dim H̃m(1) =
1

|Γ|
dim H̃m(l) ∼

1

|Γ|
(2m)g dimAk(l) ∼ (2m)g dimAk.
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Corollary 3.2.2. dim H̃g−1,m(l) ∼ (2m)g−1 dimAg−1,k.

Now see that, since by prop. 3.2.2 the Fourier coefficients are in H̃g−1(1)
even and

∑k
m=1(2m)g−1 ∼

2g−1 · kg
g
, by the previous corollary and prop. 3.2.1, we have

∑
m≤k

dim H̃g−1,m(1)
even ∼ 1

2
2g−1 · k

g

g
· 2

1
2
(g−2)(g−3)

g−1∏
j=1

(j − 1)!

2j!
Bj[k(g + 1)]

1
2
(g−1)

The ratio dimAk

/∑
m≤k dim H̃g−1,m(1)

even is k-asymptotically equal to rg :=
g!
2g!
Bg(g+1)g, and

by numerical calculation we get table 3.2

Table 3.1: Numerical calculation for rg
g rg
2 0.0250000
3 0.0126984
4 0.0124008
5 0.0194805
6 0.0447609
7 0.1414486
8 0.5883277
9 3.1157102
10 20.470239
11 163.38885
12 1557.2931

Since Bg =
2(2g)!
(2π)2g

ζ(2g), with the usual Riemann zeta, we can check

Bg+1

Bg

=
(2g + 2)(2g + 1)

(2π)2
· ζ(2g + 2)

ζ(2g)
and

rg+1

rg
=

(
g + 2

g + 1

)g

· g + 2

4g + 2
· Bg+1

Bg

from this is direct that rg is increasing and rg → ∞ when g → ∞ growing faster than ag for
any a. Since we know how to extend forms to cusps by thm. 3.1.2, we have:

Theorem 3.2.1. For g ≥ 9, dimΓ(A0
g, (Ω

N)⊗k) ∼ ckN , where N = 1
2
g(g + 1), and c is a

positive constant.

We can now deduce:

Theorem 3.2.2. For any positive integer a, there exists f(Z) ∈ Ak with order of vanishing ak
at infinity if g is sufficiently large.

Proof: By prop. 3.2.1 and cor. 3.2.2

dimAk∑
m≤ak

dimHg−1,m(1)even
∼ rg

(
k

ak

)g

=
rg
ag

but for g sufficiently large rg ≥ ag.



3.3. EXTENSION OVER QUOTIENT SINGULARITIES 33

3.3 Extension over quotient singularities

In the following Γ is a finite group acting linearly on CN , X = CN/Γ. If γ ∈ Γ, ⟨γ⟩ = the cyclic
group generated by γ, Xγ = CN/⟨γ⟩. Let X̃, X̃γ be the non-singular models of X and Xγ.

This first result proves that we can reduce to the cyclic subgroups:

Proposition 3.3.1. Given η a pluricanonical form on CN invariant under Γ, then η extends
to X̃ if and only if η extends to X̃γ for every γ ∈ Γ.

Proof: By negation, if η does not extend to X̃, then η has poles at certain exceptional
divisor F ⊆ X̃ \X. Let’s normalize X̃ with respect to the rational function field of CN and call
that Y . Let D′ a component of the preimage of D in Y . The subgroup for which its action is
the identity when restricted to D′ has to be cyclic, therefore it’s generated by a single element,
say, γ. Let U a γ-stable open set. Then, U ∩D′ ̸= ∅ and the map U/⟨γ⟩ → X̃ is unramified.
Then η is holomorphic in U but has poles in U/⟨γ⟩. So η does not extend to the resolution of
Xγ. Reversing this argument proves the converse.

Now we know that we can restrict to an arbitrary Γ = ⟨γ⟩. Assume γ acts on CN by

γ(Z1, . . . , ZN) = (e2πiS1Z1, . . . , e
2πiSNZN), Si ∈ Q, 0 ≤ Si < 1

and let X = CN/⟨γ⟩, X̃ be a resolution of X. X and X̃ can be described by torus embedding
as follows:

Let σ =
{∑N

i=1 λiei | λi ≥ 0
}
, ei ∈ ZN , assume that e1, e2, . . . , eN generate a lattice L such

that
ZN/L ≈ the cyclic group generated by S1e1 + . . .+ SNeN .

Then in terms of torus embedding of [9]

Xσ ≈ CN/⟨γ⟩ = X.

Let X{σi} : the toric resolution of Xσ by decomposing σ into the unit simplices, i.e., each face
of σα is generated by a part of a basis of ZN .

Proposition 3.3.2. Given η a γ-invariant pluricanonical form on CN , then η extends to X{σα}
if

(∗){µS1}+ {µS2}+ . . .+ {µSN} ≥ 1

for 0 < µ < m where {·} denotes the fractional part function and m is the order of γ; the least
common denominator of the Si.

Proof: Let’s write η = f(Z1, . . . , ZN)(dZ1 ∧ . . . ∧ dZN)
⊗k and {Z∗

1 , . . . , Z
∗
N} the local

coordinate system defined by σα, then

η = g(Z1, . . . , ZN)
(dZ1 ∧ . . . ∧ dZN)⊗k

(Z1, . . . , ZN)k

= g(Z∗
1 , . . . , Z

∗
N)

(dZ∗
1 ∧ . . . ∧ dZ∗

N)
⊗k

(Z∗
1 , . . . , Z

∗
N)

k
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where ordZi
g ≥ k. η extends to Xσα if ordZ∗

j
g ≥ k for all j.

When Z∗
j corresponds to a vertex v =

∑
λiei ∈ Zn of σα, with λi ∈ Q+

0 , then

ordZ∗
j
g(Z∗

1 , . . . , Z
∗
N) = λ1 ordZ1 g + . . .+ λN ordZN

g

≥ (λ1 + . . .+ λN)k.

so we can extend η to the toric resolution X{σα} if for each α, at each vertex v as above:

λ1 + . . .+ λN ≥ 1

but since v ∈ ZN and ZN/L is generated by S1e1 + . . .+ SNeN , we have

v = µ1e1 + . . .+ µNeN + µ(S1e1 + . . .+ SNeN)

where µi, µ are non negative integers. So λj = µj + µSj and
∑
λj ≥ 1 for µ ≥ m or µ = 0 on

the other hand, ∑
λj ≥ {µS1}+ . . .+ {µSN}.

Therefore if (∗) is true, then we win.
Let γ ∈ Γ which acts on CN with a fixed point x and an induced tangent space action given

by e2πiSj with 0 ≤ Sj < 1 ∈ Q. We write the pairing {γ, x} =
∑
Sj. Combining the last two

propositions it is proven that:

Theorem 3.3.1. Given η a Γ-invariant pluricanonical form on CN , if Γ is finite and acts
linearly on CN , then η extends to a non-singular model of CN/Γ if for every non-identity
γ ∈ Γ, x ∈ Fix(γ) the pairing {γ, x} ≥ 1.

3.4 Extensions over elliptic points

We’ve studied the elliptic points of A1, now we’ll prove a useful lemma that characterizes elliptic
points of Ag with our north being finding a way to extend forms over these.

Lemma 3.4.1. For Z ∈ Hg, γ ∈ Sp2g(Z) such that γZ = Z, in the local coordinate system
(xij) around Z, γ is given by

xij → ηti+tjxij

with η an mth root of unity, m = ord(γ), and ti, tj ∈ Z.

Proof: γ fixing Z means that there is an α1 ∈ Sp2g(Z) such that α1γα
−1
1 =

(
A B
−B A

)
with A+ iB ∈ Ug. So, there’s an U ∈ Ug such that

U
t
(A+ iB)U = Λ =

η
t1

. . .

ηtg

 , tj ∈ Z.
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If U = V + iW with V,W real, let

α2 =

(
V W

−W V

)
, α3 =

(
I −iI
0 I

)
then α = α3α2α1 sends Z to 0 in Cg(g+1)/2 and αγα−1 =

(
Λ 0
0 Λ−1

)
with its action around 0

given by
(xij) 7→ Λ(xij)Λ = (ηt1+tixij).

Proposition 3.4.1. Given Z ∈ Hg and a non identity γ ∈ Sp2g(Z) that fixes Z then {γ, Z} ≥ 1
for g ≥ 5.

Proof: Consider the three following lemmas, with ϕ Euler’s totient function.

Lemma 3.4.2. For a positive integer m not 1, 2, 3, 4, or 6, r = ϕ(m)/2, t1, . . . , tr positive
integers such that

0 < ti < m, (ti,m) = 1 ∀i
ti ̸≡ ±tj (mod m) for i ̸= j

then ∑{
ti + tj
m

}
≥ 1.

Proof: WLG, we fix i. Since ti and tj are incongruent mod m, we can bound∑{
ti + tj
m

}
≥ 1

4
r(r + 1)2 · 1

m
.

By hand we can check that the RHS of the inequality is ≥ 1 for all m except 2, 3, 4, 6, 8, 10, 14.
But for m = 8, 10, 14 the LHS is still ≥ 1.

Lemma 3.4.3. Given γ fixing Z, γ is conjugate to

(
Λ 0
0 Λ−1

)
and

λ =

λ1 . . .

λg

 , λj = e2πitj/m.

If (tj,m) = 1 for some j and m ̸= 1, 2, 3, 4, 6, then {γ, Z} ≥ 1.

Proof: Since the characteristic polynomial of γ has rational coefficients, all the conjugates
of λj over Q appear either in Λ or Λ−1, so by the previous lemma

{γ, Z} ≥
∑ ti + tj

m
≥ 1.
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Lemma 3.4.4. Given γ that fixes Z conjugate to

(
Λ 0
0 Λ−1

)
and all the λj appearing in Λ

have orders any 1, 2, 3, 4, or 6, then {γ, Z} ≥ 1 for g ≥ 5.

Proof: If ordλj = 6 for some j, and λiλj ̸= 1 for i ̸= j, then {γ,Z} ≥ (2 + g − 1)/6 ≥ 1 iff
g ≥ 5. If λjλi = 1 for some i ̸= j, then {γ,Z} ≥ 2/6 + 4/6 ≥ 1. For orders 2, 3, 4 {γ,Z} ≥ 1
for g ≥ 3.

3.5 Extensions over cuspidal singular points

In this final section we finish the treatment of the problematic points to extend forms in A
0

g to

the desingularizations over the singular points in Ag − Ag.

Consider a boundary component F = Hn′ of Hg, 0 ≤ n′ < g, and n = g − n′. If γ ∈ N(F )R
the normalizer of F , then we can write

γ =


A 0 B B12

A21 U B21 B22

C 0 D D12

0 0 0 U−t

 (3.2)

where U ∈ GLn(R), γ′ =

(
A B
C D

)
∈ Sp2n′(R).

Recall the defined elements involved in the toroidal compactification U(F ), T (F ), C(F ),
D(F ), (Hf/U(F )Z)σα , and πF .

We remember

D(F ) = F × V (F )× U(F )C =

{(
τ W
W t Z

)
: τ ∈ F,W ∈ V (F ) = Cn′×n, Z ∈ U(F )C

}
(Hg/U(F )Z){σα} : the interior of the closure of Hg/U(F )Z in (D(F )/U(F )Z){σα}

(Hg/U(F )Z){σα} → Ag and A
0

g : the subset of Ag where πF are unramified.

With these constructions, we can write y0 ∈ Ag − Ag as

y0 = πF (τ0,W0, Z0 + σ∞) (3.3)

where τ0 ∈ F , W0 ∈ V (F ), Z0 ∈ U(F )C, and Z0 : Z0’s image in T (F ). Z0 + σ∞ is the ideal
point in T (F )σ obtained by moving the imaginary part of Z0 towards infinity in the direction
of σ, a face of {σα}.

If y0 /∈ A
0

g, then there’s a γ ∈ N(F )Z not congruent to the identity mod U(F )Z such that

γ(τ0,W0, Z0 + σ∞) = (τ0,W0, Z0 + σ∞). (3.4)
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If we write γ as in eq. 3.2, then γ acts on Hg by

τ → γ′τ γ′ ∈ Sp2n′(Z)
W → A(τ)W + a(τ)

Z → Z[U ] + b(τ,W ) U ∈ GLn(Z)

where A(τ), a(τ), b(τ,W ) are analitic in τ,W and can be expressed explicitly in terms of
A,B,C,D.

We now rewrite eq. 3.4 as

τ0 = γ′τ0

W0 = A(τ0)W0 + a(τ0)

Z0 = Z0[U ] + b(τ0,W0) + c, where c ∈ L(σ)⊗ C and

L(σ) is the linear span of σ. U(σ) = σ

By further decomposition of C(F ) we can assume that U/σ = I. Let Eσ = (D(F )/U(F )Z)σ.
Eσ is γ-invariant and a fiber space over F and F × V (F ). The eigenvalues of γ on the tangent
space of Eσ at (τ0,W0, Z0 + σ∞) can be obtained by calculating the eigenvalues on F , V (F ),
and T (F )σ separately.

Assume the eigenvalues of γ are {λ1, . . . , λn′ , λ−1
1 , . . . , λ−1

n′ }, U has eigenvalues {µ1, . . . , µn}
and let Λ and M be the diagonal matrices with λi and µi as entries respectively.

Lemma 3.5.1.

1. The eigenvalues of γ on the tangent space to F at τ0 are λiλj, 1 ≤ i ≤ j ≤ n′.

2. The eigenvalues of γ on the tangent space to V (F ) at W0 are λiµj, 1 ≤ i ≤ n′, 1 ≤ j ≤ n.

Proof: The lemma follows from diagonalizing γ′ and U and noting that the action of γ
around (τ0,W0) is the same as the local action of γ1 at (0,W1) where

γ1 =


Λ 0 0 ∗
∗ M ∗ ∗
0 0 Λ ∗
0 0 0 M

 , γ1(τ,W ) = (ΛτΛ,ΛWM + a)

with W1 ∈ V (F ) and ΛW1M + a = W1

Let T be T (F ), Tσ the torus embedding associated to σ. From [9] we know that in Tσ
there’s a unique closed orbit Oσ and a subtorus T ′

σ such that T/T ′
σ ≈ Oσ:

Oσ is defined by Xr = 0, r ≥ 0 on σ, r > 0 on Int(σ),
T ′
σ is defined by Spec C [Xr]r∈L(σ)∩U(F )/Z.

Since we assumed U/σ = I, U acts trivially on T ′
σ, and U fixes eσ : the identity of Oσ.

Now γ acts on T by Z → Z[U ] + b mod U(F )Z, this action extends to Tσ, Oσ.

Lemma 3.5.2. The eigenvalues of γ on the tangent space to Tσ at Z0 + σ∞ are µij, 1 ≤ i ≤
j ≤ n where µij = µjµi if µiµj ̸= 1.
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Proof: Since γ fixes Z0 + σ∞, we have

Z0 ≡ Z0[U ] + b+ c mod U(F )Z

with c ∈ L(σ)⊗ C. Let tZ0 be the translation by Z0, it is easy to see tZ0 ◦ U = γ ◦ tZ0 on Oσ,
since for any Z ∈ U(F )C

γ0 ◦ tZ0(Z)− tZ0 ◦ U(Z) ≡ c mod U(F )Z.

In the Oσ-directions, the eigenvalues µij are the same as the eigenvalues of U on the tangent
space to eσ. The latter eigenvalues contain all the µiµj when µiµj ̸= 1.

Remark 3.5.1. This result illuminates why A
0

g are the Ag singular points for g ≥ 3, since the
ramification divisor of πF occurs when exactly one of λiλj, λiµj, µiµj ̸= 1, which can happen
only if g ≤ 2.

Proposition 3.5.1. For g ≥ 5, η a pluricanonical holomorphic form in A
0

g, η extends to the

desingularizations of the singular points in Ag \ Ag.

Proof: If y0 ∈ Ag \ Ag, y0 /∈ A0
g then we have, as before

x0 = (τ0,W0, Z0 + σ∞) ∈ Eσ

γx0 = x0, γ ∈ N(F )Z

y0 = πF (x0).

By the two previous lemmas, the eigenvalues of γ on the tangent space at x0 are λiλj, λiµk
and µjk (µjk = µiµk if µiµk ̸= 1). This is similar to the situation in the interior fixed points,
by the same arguments as in the last 2 lemmas of the previous section, we have {γ, x0} ≥ 1.
Hence η extends to the desingularizations over y0.

Finally, using proposition 3.5.1 to extend forms to the desingularizations on singular cusp
points, using proposition 3.4.1 to assure the condition for extending forms on quotient singular-
ities through theorem 3.3.1, and using theorem 3.2.1 to understand the asymptotic behaviour
of the dimension of the space of global forms, we’ve proven that:

Theorem 3.5.1. For g ≥ 9, dimΓ(ΩN(Ãg)
⊗k) ∼ ckN , with N = g(g+ 1)/2, and c > 0. So Ag

is of general type.
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