Tarea 1 – Aritmética

Profesor: Pedro Montero, Ayudante: Tobías Martínez

Departamento de Matemática, Universidad Técnica Federico Santa María

Fecha de entrega: Hasta el Domingo 16 de Abril de 2023 a las 23h59.

Esta Tarea puede ser realizada en grupos de 1 o 2 personas, y se debe indicar el nombre de cada integrante.

Problemas de clases

1. Recuerdos de Álgebra Abstracta (10 puntos)

Elija sólamente 1 ejercicio para resolver.

- 1. Sea **K** un cuerpo y $F \in \mathbf{K}[X] \setminus \{0\}$ polinomio irreducible. Probar que el anillo cociente $\mathbf{K}[X]/\langle F \rangle$ es un cuerpo.
 - Indicación: Probar que $\langle F \rangle \subseteq \mathbf{K}[X]$ es un ideal maximal.
- 2. Sea A un anillo conmutativo, y sea $F \in A[X]$ con coeficiente líder 1. Probar que $A[X]/\langle F \rangle$ es un A-módulo libre con base dada por $(\overline{1}, \overline{X}, \dots, \overline{X}^{\deg(F)-1})$.

2. Clausura integral (10 puntos)

Elija sólamente 1 ejercicio para resolver.

1. Sea B una A-álgebra conmutativa. Supongamos que B es un A-módulo finitamente generado por $\{e_1, \ldots, e_m\}$, y que M es un B-módulo finitamente generado por $\{f_1, \ldots, f_n\}$. Probar que

$${e_i f_j, \ 1 \le i \le m, \ 1 \le j \le n}$$

es un conjunto generador de M como A-módulo. En particular, M es un A-módulo finitamente generado.

- 2. Encontrar $P \in \mathbf{Z}[X]$ mónico tal que $P(\sqrt{2} + \sqrt{3}) = 0$.
- 3. Sea $\tilde{A} \subseteq B$ la clausura integral de A en B. Demostrar que $\tilde{\tilde{A}} = \tilde{A}$, es decir, que si $\alpha \in B$ es entero sobre \tilde{A} entonces necesariamente $\alpha \in \tilde{A}$.
- 4. Sean $A \subseteq B$ anillos conmutativos con B entero sobre A, sea \mathfrak{q} un ideal primo de B y defina $\mathfrak{p} := \mathfrak{q} \cap A$. Demuestre que \mathfrak{p} es un ideal primo y que B/\mathfrak{q} es entero sobre A/\mathfrak{p} .

3. Extensiones de cuerpos y Anillos de enteros (20 puntos)

Elija 2 ejercicios para resolver.

- 1. Sean L/K y M/L extensiones de cuerpos. Probar que:
 - (a) Si \mathbf{L}/\mathbf{K} es una extensión finita, entonces \mathbf{L}/\mathbf{K} es una extensión algebraica.
 - $(b) \ [\mathbf{M}:\mathbf{K}] = [\mathbf{M}:\mathbf{L}][\mathbf{L}:\mathbf{K}].$
 - (c) Si $\alpha \in \mathbf{L}$ es algebraico sobre \mathbf{K} , entonces $\mu_{\alpha}^{\mathbf{K}} \in \mathbf{K}[X]$ es un polinomio irreducible, y además

$$\mathbf{K}[X]/\langle \mu_{\alpha}^{\mathbf{K}}\rangle \xrightarrow{\cong} \mathbf{K}[\alpha] =: \mathbf{K}(\alpha)$$

es un isomorfismo de cuerpos.

- (d) Deducir que $[\mathbf{Q}(\sqrt{2}):\mathbf{Q}]=2$.
- 2. Calcular $\mathrm{Tr}_{\mathbf{C}/\mathbf{R}}(\alpha)$ y $\mathrm{N}_{\mathbf{C}/\mathbf{R}}(\alpha)$ para todo $\alpha \in \mathbf{C}.$
- 3. Calcular el discriminante $d_{\mathbf{K}}$ para $\mathbf{K} = \mathbf{Q}(\sqrt{d})$ con $d \in \mathbf{Z} \setminus \{0\}$ entero libre de cuadrados (i.e., de la forma $d = \pm p_1 \cdots p_r$ donde los p_i son primos distintos).

 $^{^{1}}$ Factor de retraso: 0.7 por 1 día de retraso, 0.55 por 2 días de retraso, 0.01 por 3 días de retraso.

4. Sea \mathbf{L}/\mathbf{K} una extensión cuadrática (i.e., $[\mathbf{L}:\mathbf{K}]=2$) y sea $\alpha\in\mathbf{L}\setminus\mathbf{K}$ tal que $\mathbf{L}=\mathbf{K}(\alpha)$, y donde $\mu_{\alpha}^{\mathbf{K}}=X^2+bX+c\in\mathbf{K}[X]$ es el correspondiente polinomio minimal. Calcular $\mathrm{Tr}_{\mathbf{L}/\mathbf{K}}(1),\mathrm{Tr}_{\mathbf{L}/\mathbf{K}}(\alpha)$ y $\mathrm{Tr}_{\mathbf{L}/\mathbf{K}}(\alpha^2)$ en términos de $b,c\in\mathbf{K}$ y deducir que el discriminante de la forma bilineal

$$B: \mathbf{L} \times \mathbf{L} \longrightarrow \mathbf{K}, \ (x,y) \longmapsto B(x,y) := \mathrm{Tr}_{\mathbf{L}/\mathbf{K}}(xy)$$

está dado por $b^2 - 4c$ (i.e., coincide con el discriminante del polinomio $X^2 + bX + c$).

Problema 1 (20 puntos)

El objetivo de este problema es probar una versión efectiva del **Teorema del Elemento Primitivo** para cuerpos de números. Concretamente, probaremos que si $\mathbf{K} = \mathbf{Q}(\alpha_1, \dots, \alpha_d)$ es una extensión finita de \mathbf{Q} entonces existe $\alpha \in \mathbf{K}$ tal que $\mathbf{K} = \mathbf{Q}(\alpha)$.

Para comenzar, considere el caso particular en que $\mathbf{K} := \mathbf{Q}(\alpha, \beta)$. Sean $f(X) := \mu_{\alpha}^{\mathbf{Q}}(X), g(X) := \mu_{\beta}^{\mathbf{Q}}(X)$ los polinomios minimales de α y β sobre \mathbf{Q} con $\deg(f) = n, \deg(g) = m$, y sean $\alpha_1, \ldots, \alpha_n \in \mathbf{C}$ y $\beta_1, \ldots, \beta_m \in \mathbf{C}$ las raíces de f y g con $\alpha_1 = \alpha, \beta_1 = \beta$.

- 1. Pruebe que $\alpha_i \neq \alpha_j$ para $i \neq j$.
- 2. Pruebe que existe $\lambda \in \mathbf{Q}$ tal que

$$\lambda \neq \frac{\alpha_i - \alpha}{\beta - \beta_i},$$

para todos $i \in \{1, ..., n\}$ y $j \in \{2, ..., m\}$.

Indicación: Notar que Q es un cuerpo infinito.

Con la notación del ítem (2), definamos $\theta := \alpha + \lambda \beta$ y $h(X) := f(\theta - \lambda X)$.

- 3. Demuestre que $mcd(g(X), h(X)) = X \beta$ en el anillo $\mathbf{Q}(\theta)[X]$.
- 4. Del resultado anterior (y de la definición de θ) concluya que $\alpha, \beta \in \mathbf{Q}(\theta)$ y luego $\mathbf{K} = \mathbf{Q}(\theta)$.
- 5. Demuestre, usando inducción, el caso general en que $\mathbf{K} = \mathbf{Q}(\alpha_1, \dots, \alpha_d)$.

Problema 2 (20 puntos)

El objetivo de este problema es estudiar **cuerpos ciclotómicos**. Para ello consideremos $m \in \mathbb{N}^{\geq 1}$ fijo, y definamos inductivamente el m-ésimo polinomio ciclotómico $\Phi_m(T) \in \mathbf{Z}[T]$ mediante la fórmula

$$T^m - 1 = \prod_{d|m} \Phi_d(T).$$

Alternativamente, $\Phi_m(T) = \prod_{\substack{1 \le k \le m \\ \operatorname{mcd}(k,m)=1}} (T - e^{2\pi i k/m})$, donde $\deg(\Phi_m) := \varphi(m)$ es la función φ de Euler.

- 1. Calcular explícitamente $\Phi_6(T)$.
- 2. Sea p un número primo. Pruebe que $\Phi_p(T)$ es irreducible sobre $\mathbf{Q}[T]$ aplicando el *criterio de Eisenstein*² al polinomio $F(T) := \Phi_p(T+1) \in \mathbf{Z}[T]$.
- 3. Sea p un número primo y $k \in \mathbb{N}^{\geq 1}$. Demuestre que $\Phi_{p^k}(T) = \Phi_p(T^{p^{k-1}})$ y concluya que $\Phi_m(T)$ es irreducible en $\mathbb{Q}[T]$ cuando $m = p^k$ es una potencia de un primo.

Para analizar el caso general con $m \in \mathbb{N}^{\geq 1}$ arbitrario, consideremos un primo p que no divida a m y supongamos (por contradicción) que $\Phi_m(T)$ tiene un factor g(T) mónico irreducible. Así,

$$T^m - 1 = g(T)h(T)$$
 donde $g(T), h(T) \in \mathbf{Z}[T]$

por el Lema de Gauss. Sea $\alpha \in \mathbf{C}$ una raíz de g(T).

3. Probar que α^p es una raíz de T^m-1 . Deducir que si $g(\alpha^p)\neq 0$ entonces g(T) divide a $h(T^p)$.

²El **criterio de Eisenstein** afirma que si p es un número primo y $F(T) = T^n + a_{n-1}T^{n-1} + \ldots + a_1T + a_0 \in \mathbf{Z}[T]$ es tal que p divide a todo a_i con $i \in \{0, \ldots, n-1\}$ pero p^2 no divide a_0 , entonces F(T) es irreducible en $\mathbf{Q}[T]$.

- 4. Use el hecho de que en el anillo $\mathbf{F}_p[T]$ se cumple el freshman's dream $h(T^p) = h(T)^p$ para demostrar que si $h(\alpha^p) = 0$, entonces $T^m 1$ tiene una raíz doble en \mathbf{F}_p . Use el criterio de la derivada³ para verificar que esto no es posible y concluya que $g(\alpha^p) = 0$ para todo primo p que no divide a m.
- 5. Concluya que $\Phi_m(T)$ y g(T) tienen los mismos ceros y por tanto son iguales, con lo cual $\Phi_m(T)$ es irreducible.

Observación: La extensión $\mathbf{Q}(\zeta_m) \simeq \mathbf{Q}[T]/\Phi_m(T)$ es llamada la m-ésima extensión ciclotómica de \mathbf{Q} , donde ζ_m es una raíz m-ésima primitiva de la unidad. Note que $[\mathbf{Q}(\zeta_m):\mathbf{Q}]=\varphi(m)$, el valor de la función φ de Euler en m.

Problema 3 (20 puntos)

El objetivo de este problema es calcular explícitamente anillos de enteros y discriminantes. Para ello consideramos el siguiente algoritmo (que, en la Tarea 1, aceptaremos como correcto):

- PASO 1 Sea $\mathbf{K} = \mathbf{Q}(\alpha_1, \dots, \alpha_r)$ una extensión de grado $[\mathbf{K} : \mathbf{Q}] = d$. Use el Problema 1 para determinar $\gamma \in \mathbf{K}$ tal que $\mathbf{K} = \mathbf{Q}(\gamma)$.
- Paso 2 Encuentre $m \in \mathbf{Z}$ tal que $\alpha = m\gamma \in \mathcal{O}_{\mathbf{K}}$. De esta forma $\mathbf{K} = \mathbf{Q}(\alpha)$.
- Paso 3 Defina $\beta_i = \alpha^{i-1}$ para cada $i \in \{1, ..., d-1\}$. Calcular $\Delta(\beta_1, ..., \beta_n) := \det((\operatorname{Tr}_{\mathbf{K}/\mathbf{Q}}(\beta_i\beta_j)_{1 \leq i,j \leq d}) \in \mathbf{Z}$. Para esto último, puede utilizar directamente el siguiente hecho (sin demostración):

Hecho: Supongamos que $[\mathbf{Q}(\alpha):\mathbf{Q}]=d$ y escribamos $f:=\mu_{\alpha}^{\mathbf{Q}}=(X-\alpha_1)\cdots(X-\alpha_d)$ en $\mathbf{C}[X]$. Entonces, $\Delta(1,\alpha,\ldots,\alpha^{d-1})=\prod_{i< j}(\alpha_j-\alpha_i)^2=(-1)^{d(d-1)/2}N_{\mathbf{Q}(\alpha)/\mathbf{Q}}(f'(\alpha))$.

- Paso 4 Si $\Delta(\beta_1, \ldots, \beta_d)$ es libre de cuadrados, entonces $\mathscr{O}_{\mathbf{K}} = \mathbf{Z}[\alpha]$ y $d_{\mathbf{K}} = \Delta(\beta_1, \ldots, \beta_d)$. En caso contrario, considere el siguiente paso.
- Paso 5 Considere el conjunto

$$A := \{ p \in \mathbf{N} \text{ primo tal que } p^2 | \Delta(\beta_1, \dots, \beta_d) \}.$$

Para cada $p \in A$ defina el conjunto finito

$$A_p = \{y = m_1\beta_1 + \ldots + m_d\beta_d \text{ donde } m_i \in \{0, 1, \ldots, p-1\}, (m_1, \ldots, m_d) \neq (0, \ldots, 0)\}.$$

Si para todo $p \in A$ no existe $y \in A_p$ tal que y/p es entero, entonces los β_i generan a $\mathscr{O}_{\mathbf{K}}$ y deducimos que $\mathscr{O}_{\mathbf{K}} = \mathbf{Z}[\alpha]$ y $d_{\mathbf{K}} = \Delta(\beta_1, \dots, \beta_d)$. En caso contrario, considere el siguiente paso.

- PASO 6 Sea $p \in A$ tal que p^2 divide $\Delta(\beta_1, \dots, \beta_d)$ y sean $m_1, \dots, m_d \in \{0, 1, \dots, p-1\}$ no todos nulos tales que y/p es entero, donde $y = m_1\beta_1 + \dots + m_d\beta_d$. Si algún $m_j = 1$, considere el siguiente paso. En caso contrario, tome un $m_j \neq 0$ y escoja un entero r tal que $rm_j \equiv 1 \pmod{p}$. Para $i \in \{1, \dots, d\}$, sea $\mu_i \in \{0, 1, \dots, p-1\}$ el único entero congruente a $rm_i \pmod{p}$. Note que $\mu_j = 1$, por construcción. Reemplace y por $\mu_1\beta_1 + \dots + \mu_d\beta_d$.
- Paso 7 Escoja el índice j tal que $m_j = 1$, y defina

$$\beta_i' := \left\{ \begin{array}{cc} \beta_i, & \text{si } i \neq j, \\ y/p, & \text{si } i = j. \end{array} \right.$$

Por construcción, los $\beta_1', \dots, \beta_d' \in \mathscr{O}_{\mathbf{K}}$ y además $\Delta(\beta_1', \dots, \beta_d') = \frac{1}{p^2} \Delta(\beta_1, \dots, \beta_d)$.

PASO 8 Repita el procedimiento para $\beta'_1, \ldots, \beta'_d$

Use el algoritmo anterior para encontrar el discriminante y el anillo de enteros del cuerpo $\mathbf{K} = \mathbf{Q}(\alpha)$, con

$$\alpha = \frac{1}{\sqrt[3]{2}}.$$

 $^{^3}$ Un polinomio no-constante $F \in \mathbf{K}[X]$ tiene una raíz múltiple en \mathbf{K} si F y su derivada F' tienen al menos una raíz en común.