Ayudantía 2 Geometría Diferencial MAT290 (Pauta)

Benjamín Bravo Carrasco Universidad Técnica Federico Santa María

Ejercicio 1.

Sea $\varphi:U\subseteq E\ \tilde{\to}\ V\subseteq E$ un difeomorfismo de clase \mathscr{C}^1 y sea $M\subseteq E$ subvariedad, pruebe que:

- 1. $\varphi(M \cap U)$ es una subvariedad de E.
- 2. $(d_a\varphi)(T_aM) = T_{\varphi(a)}\varphi(M)$ para todo $a \in U$

Demostración.

1. Dado que M es una subvariedad, entonces existe $\psi:U\stackrel{\simeq}{\longrightarrow} \tilde{U}$ un difeomorfismo tal que

$$\psi(M \cap U) = A \cap \tilde{U}$$

donde A es un espacio afin. Asi, al ver el siguiente diagrama:

$$M \cap U \xrightarrow{\simeq} \varphi(M \cap U)$$

$$\simeq \downarrow^{\psi}$$

$$A \cap \tilde{U}$$

notamos que existe un difeomorfismo $\Phi := \psi \circ \varphi^{-1}$, tal que

$$\Phi(\varphi(M \cap U) = A \cap \tilde{U}$$

Con lo cual $\varphi(M \cap U)$ es una subvariedad.

2. i) $(d_a\varphi)(T_aM) \subseteq T_{\varphi(a)}\varphi(M)$

Sea $v \in (d_a \varphi)(T_a M)$, sin perdida de generalidad asumamos $v = (d_a \varphi)(w)$ con $w \in (T_a M)$. Dado que $w \in (T_a M)$, entonces existe $\gamma : (-\varepsilon, \varepsilon) \longrightarrow M$ función continua y derivable en 0 con $\gamma(-\varepsilon, \varepsilon) \subseteq M$, tal que:

$$\gamma(0) = a$$

$$\gamma'(0) = w$$

Como para obtener un elemento de $T_{\varphi(a)}\varphi(M)$ es necesario encontrar una función tal que al evaluarla en 0 obtengamos el valor $\varphi(a)$, de forma natural nos preguntamos que pasa con el candidato $\Gamma:=(\varphi\circ\gamma)$, pues Γ es una función continua y derivable en 0 por ser composición de funciones continuas y derivables en 0, además $\Gamma(-\varepsilon,\varepsilon)\subseteq\varphi(M)$, pues $\gamma(-\varepsilon,\varepsilon)\subseteq M$ y φ en un difeomorfismo.

Como $\Gamma(0) = \varphi(a)$ y Γ cumple con todas las condiciones, tenemos que $\Gamma'(0) \in T_{\varphi(a)}\varphi(M)$ y usando regla de la cadena tenemos lo siguiente:

$$\Gamma' = d_0(\varphi \circ \gamma) = d_{\gamma(0)}\varphi \circ \gamma' = d_a\varphi \circ \gamma'$$

Luego

$$\Gamma'(0) = d_a \varphi \circ \gamma'(0) = d_a \varphi(w)$$

Con lo cual $d_a \varphi(w) \in T_{\varphi(a)} \varphi(M)$

ii)
$$(d_a\varphi)(T_aM) \supseteq T_{\varphi(a)}\varphi(M)$$

Como φ es un difeomorfismo $\Psi := \varphi^{-1}$ tambien lo será. Definiendo las siguientes variables: $\varphi(a) = a'$, $\Psi(a') = a$, $\varphi(M) = M'$, $\Psi(M') = M$, tendremos lo siguiente:

$$(d_a\varphi)(T_aM) \supseteq T_{\varphi(a)}\varphi(M)$$

$$\Leftrightarrow (d_{\Psi(a')}\Psi^{-1})(T_{\Psi(a')}\Psi(M')) \supseteq T_{a'}M'$$

$$\Leftrightarrow T_{\Psi(a')}\Psi(M') \supseteq (d_{a'}\Psi)(T_{a'}M')$$

que es lo que acabamos de demostrar.

Con lo cual $(d_a\varphi)(T_aM) = T_{\varphi(a)}\varphi(M)$.

Ejercicio 2.

Pruebe que $f: X \to Y$ es una función cerrada, si solo si para todo $y \in Y$ y para todo abierto $U \subseteq X$ tal que $f^{-1}(\{y\}) \subseteq U$ existe un abierto $V \subseteq Y$ tal que $y \in V$ y $f^{-1}(V) \subseteq U$.

 $Demostración. (\Rightarrow)$

Sean $y \in Y$, $U \subseteq X$ un abierto tal que $f^{-1}(\{y\}) \subseteq U$.

Notemos que $X \setminus U$ es un cerrado, y como f es una función cerrada entonces $f(X \setminus U)$ es cerrado, por tanto $Y \setminus f(X \setminus U)$ es abierto. Veremos que $V := Y \setminus f(X \setminus U)$ es un abierto que cumple ambas hipotesis.

En primer lugar veamos que $y \in V$, supongamos que $y \notin V$, entonces:

$$\Leftrightarrow y \notin Y \setminus f(X \setminus U)$$
$$\Leftrightarrow y \in f(X \setminus U)$$

Por tanto existe $p \in X \setminus U$ tal que f(p) = y, lo cual es una contradicción, pues $f^{-1}(\{y\}) \subseteq U$.

Ahora, sea $x \in f^{-1}(V)$, por tanto $f(x) \in V$, luego:

$$f(x) \in Y \setminus f(X \setminus U)$$

$$\Leftrightarrow f(x) \notin f(X \setminus U)$$

$$\Leftrightarrow x \notin X \setminus U$$

$$\Leftrightarrow x \in U$$

 (\Leftarrow)

Para mostrar que f es una función cerrada, veremos que para todo $y \in Y$ existira un abierto V tal que $y \in V$ y $V \subseteq Y \setminus f(C)$, con $C \subseteq X$ cerrado, por lo que $Y \setminus f(C)$ será abierto, concluyendo que f(C) es cerrado.

Sea $C \subseteq X$ un cerrado, entonces $X \setminus C$ será abierto. Sea $y \in Y$ tal que $f^{-1}(\{y\}) \subseteq X \setminus C$. Usaremos este último conjunto como $U := X \setminus C$.

Como U es abierto y $f^{-1}(\{y\}) \subseteq U$, entonces existe un abierto $V \subseteq Y$ tal que $y \in V$ y $f^{-1}(V) \subseteq U$, es decir.

$$f^{-1}(V) \subseteq U = X \setminus C$$

Lo cual implica que V no contiene a ningun punto de f(C) (pues en caso de que compartan algun punto la preimagen de V compartiría algún punto con C), asi $V \subseteq Y \setminus f(C)$ y dada la arbitrariedad de el punto elegido $Y \setminus f(C)$ será abierto, concluyendo que f(C) es cerrado.

Ejercicio 3.

Probar que la función $f: \mathbb{R} \to \mathbb{C}, \ t \mapsto e^{(1+i)t} = e^t cos(t) + i e^t sin(t)$ es un incrustamiento.

Demostración.

Para que la función f sea un incrustamiento tiene que ser una inmersión y ser un homomorfismo.

Primero veamos que es una inmersión. Usando el isomorfismo $z \mapsto (Re(z), Im(z))$, podemos identificar que $\mathbb{C} \simeq \mathbb{R}^2$ y para una mayor comodidad trabajaremos usando este isomorfismo durante esta primera parte, entonces:

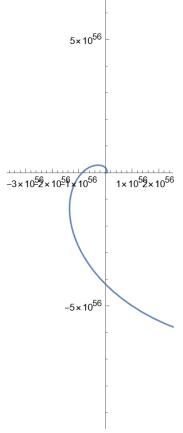
$$\tilde{f}: \mathbb{R} \to \mathbb{R}^2, \ t \mapsto (e^t cos(t), e^t sin(t))$$

y el jacobiano será el vector fila

$$J_{\tilde{f}} = e^{t}(\cos(t) - \sin(t), \cos(t) + \sin(t))$$

Como el vector fila $J_{\tilde{f}}$ no se anula en ningún punto $(Nul(J_{\tilde{f}})=0)$, por teorema del rango concluimos que $Im(J_{\tilde{f}})=1$, con lo cual \tilde{f} es un incrustamiento, luego f lo es.

Ahora para ver que f es un homeomorfismo determinaremos que es una función biyectiva y cerrada. En primer lugar, claramente f no es biyectiva en $\mathbb C$ como podemos ver en el gráfico:



Por lo que mostraremos que f es una función biyectiva cuando su codomoinio es $f(\mathbb{R})$. Dado que f será sobreyectiva, bastaría ver que f es inyectiva, en efecto:

Sean $x, y \in \mathbb{R}$ tales que f(x) = f(y)

$$f(x) = f(y)$$

$$\Leftrightarrow e^{(1+i)x} = e^{(1+i)y}$$

$$\Leftrightarrow \frac{e^{(1+i)x}}{e^{(1+i)y}} = 1$$

$$\Leftrightarrow e^{(1+i)(x-y)} = e^0 + 2i\pi n \qquad n \in \mathbb{Z}$$

$$\Leftrightarrow (x-y) = 0$$

$$\Leftrightarrow x = y$$

Con lo que f es una función inyectiva.

Ahora bien, para que f sea una función cerrada usaremos el criterio demostrado en el ejercicio 2. Sea $y \in f(\mathbb{R})$ y $U \subseteq \mathbb{R}$ un abierto tal que $f^{-1}(\{y\}) \subseteq U$, sin perdida de generalidad asumiremos que U = (a,b). Para que f sea cerrada basta encontrar una abierto que cumpla las siguientes condiciones

- 1. $y \in V$
- $f^{-1}(V) \subseteq U$

Tomando como abierto $V := D(0, e^b) \setminus D[0, e^a]$, notamos que:

1.
$$y \in V$$
, pues $f^{-1}(\{y\}) \subseteq (a,b)$, con lo cual $|y| \in (e^a, e^b)$

2.
$$f^{-1}(V)\subseteq U$$
, en efecto, sea $x\in f^{-1}(V)$
$$\Rightarrow f(x)\in V$$

$$\Rightarrow |f(x)|\in (e^a,e^b)$$

$$\Rightarrow x\in (a,b)$$

Por lo que f es una función cerrada.

Finalmente, como f al restringir su codominio es una función biyectiva y tambien cerrada, por teorema f será un homeomorfismo, concluyendo que f es un incrustramiento.