Problema 1

El objetivo de este problema es entender la topología en $\overline{\mathbb{C}} := \mathbb{C} \cup \{+\infty\}$, para ello recordemos lo siguiente:

Definición 1. Sea (X, \mathcal{T}) un espacio topologíco. Decimos que

1. X es metrizable si existe una función $d: X \times X \to \mathbb{R}^{\geq 0}$ tal que

$$1)d(x,y) = 0 \Longleftrightarrow x = y \qquad 2)d(x,y) = d(y,x) \qquad c)d(x,y) \le d(x,z) + d(z,y)$$

y los conjuntos

$$B(x,\varepsilon) := \{ y \in X : d(x,y) < \varepsilon \}, \qquad x \in X, \varepsilon \in \mathbb{R}^{>0}$$

forma una base de vecindades de (X, \mathcal{T}) .

2. X es compacto si todo recubrimiento abierto tiene un subrecubrimiento finito.

Definición 2. Una vecindad del infinito es un anillo abierto de la forma

$$A(0; R, +\infty) := \mathbb{C} \setminus \overline{D}(0, R)$$
 para $R > 0$

Reescribiendo esto en $\overline{\mathbb{C}}$, tenemos que una vecindad del infinito es un abierto $\overline{\mathbb{C}}\backslash \overline{D}(0,R)$, es decir, un conjunto que contenga a $+\infty$ y sea el complemento de un conjunto compacto. Se puede probar que esto hace a $\overline{\mathbb{C}}$ un espacio topológico y llamamos \mathcal{T}_C a esa topología.

Definición 3. En $\mathbb{C} \cup \{+\infty\}$ definimos $d_C : \mathbb{C} \cup \{+\infty\} \times \mathbb{C} \cup \{+\infty\} \to \mathbb{R}^{\geq 0}$ por

$$d_C(z,w) := \frac{2|z-w|}{\sqrt{(|z|^2+1)(|w|^2+1)}}, \qquad \forall z, w \in \mathbb{C}$$

$$d_C(z,+\infty) := \frac{2}{\sqrt{|z|^2+1}}, \qquad \forall z \in \mathbb{C}$$

con $d_C(+\infty, +\infty) := 0$. Llamamos a esta la métrica cordal.

1. Sea $\mathbb{S}^2 := \{x \in \mathbb{R}^3 : ||x||_{\text{euc}} = 1\}$. Pruebe que $\varphi : (\mathbb{C} \cup \{+\infty\}, d_C) \to (\mathbb{S}^2, ||\cdot||_{\text{euc}})$ es un homeomorfismo, donde

$$\varphi(z) := \frac{1}{1+|z|^2} \left(z + \overline{z}, -i(z - \overline{z}), |z|^2 - 1 \right), \quad \forall z \in \mathbb{C}$$

$$y \varphi(+\infty) := (0,0,1).$$

Demostración. Dado $z \in \mathbb{C}$, veamos que $\varphi(z) \in \mathbb{S}^2$.

$$\begin{split} \|\varphi(z)\|_{\text{euc}}^2 &= \frac{1}{(1+|z|^2)^2} ((z+\overline{z})^2 + (-i(z-\overline{z}))^2 + (|z|^2 - 1)^2) \\ &= \frac{1}{(1+|z|^2)^2} (z^2 + 2|z|^2 + \overline{z}^2 - (z^2 - 2|z|^2 + \overline{z}^2) + |z|^4 - 2|z|^2 + 1) \\ &= \frac{1}{(1+|z|^2)^2} (4|z|^2 + |z|^4 - 2|z|^2 + 1) \\ &= \frac{1}{(1+|z|^2)^2} (|z|^4 + 2|z|^2 + 1) \\ &= \frac{1}{(1+|z|^2)^2} (1+|z|^2)^2 \\ &= 1 \end{split}$$

Para ver que es biyectiva, sea $x \in \mathbb{S}^2 \setminus \{(0,0,1)\}$ y resolvamos la ecuación $\varphi(z) = x$.

$$x_1 + ix_2 = \frac{1}{1 + |z|^2}((z + \overline{z}) + (z - \overline{z})) = \frac{2z}{1 + |z|^2}$$

$$1 - x_3 = 1 - \frac{|z|^2 - 1}{1 + |z|^2} = \frac{|z|^2 + 1 - |z|^2 + 1}{1 + |z|^2} = \frac{2}{1 + |z|^2}$$

Como $x \neq (0, 0, 1), 1 - x_3 \neq 0$ y por tanto

$$z = \frac{x_1 + ix_2}{1 - x_3} \in \mathbb{C}$$

Por tanto φ es sobreyectiva. Notemos que si $x,y\in\mathbb{S}^2$, entonces

$$||x-y||_{euc}^2 = ||x||_{euc}^2 - 2\langle x,y\rangle + ||y||_{euc}^2 = 2(1-\langle x,y\rangle)$$

Luego, si $z, w \in \mathbb{C}$,

$$\begin{split} \|\varphi(z) - \varphi(w)\|_{euc}^2 &= 2 - 2\frac{1}{(1+|z|^2)(1+|w|^2)}((z+\overline{z})(w+\overline{w}) - (z-\overline{z})(w-\overline{w}) + (|z|^2 - 1)(|w|^2 - 1)) \\ &= 2 - 2\frac{1}{(1+|z|^2)(1+|w|^2)}(z\overline{w} + \overline{z}w + z\overline{w} + \overline{z}w + |z|^2|w|^2 - |z|^2 - |w|^2 + 1) \\ &= 2 - 2\frac{1}{(1+|z|^2)(1+|w|^2)}(4\operatorname{Re}(z\overline{w}) + |z|^2|w|^2 - |z|^2 - |w|^2 + 1) \\ &= \frac{2}{(1+|z|^2)(1+|w|^2)}(|z|^2|w|^2 + |z|^2 + |w|^2 + 1 - 4\operatorname{Re}(z\overline{w}) - |z|^2|w|^2 + |z|^2 + |w|^2 - 1) \\ &= \frac{4}{(1+|z|^2)(1+|w|^2)}(|z|^2 - 2\operatorname{Re}(z\overline{w}) + |w|^2) \\ &= \frac{4|z-w|}{(1+|z|^2)(1+|w|^2)} \\ &= d_C^2(z,w) \end{split}$$

De donde deducimos que φ es invectiva e isométrica, concluyendo que es un homeomorfismo.

Comentarios.

- a) Debido a este homeomorfismo, se conoce a $\mathbb{C} \cup \{+\infty\}$ como esfera de Riemann y es una superficie de Riemann.
- b) La función φ se obtiene de proyectar la esfera sobre el plano complejo de la siguiente manera: Fijamos el punto (0,0,1) y dado un punto de la esfera, se mapea a la intersección de la recta que pasa por el punto y por (0,0,1) con el plano complejo, como se ve en la figura

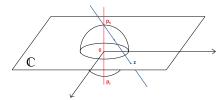


Figura 1: Proyección estereográfica

c) También se puede identificar a la esfera de Riemann con el espacio el espacio proyectivo $\mathbb{P}^1 := \mathbb{P}(\mathbb{C}^2)$, que consiste en el conjunto de rectas afines de \mathbb{C}^2 . Esta identidicación es útil ya que nos permite entender los morfismos lineales en \mathbb{P}^1 como funciones racionales en $\mathbb{C} \cup \{+\infty\}$ llamadas transformaciones de Möbius.

2. Pruebe que $(\mathbb{C} \cup \{+\infty\}, \mathcal{T}_C)$ es metrizable. **Indicación.** Considere la métrica cordal.

Demostración. Consideremos la función $f: \mathbb{C} \to \mathbb{C} \cup \{+\infty\}$ dada por f(z) = z. Entonces

$$d_C(f(z), f(w)) = d_C(z, w) \stackrel{\text{def}}{=} \frac{2|z - w|}{\sqrt{(|z|^2 + 1)(|w|^2 + 1)}} \le 2|z - w|, \qquad \forall z, w \in \mathbb{C}$$

Por tanto f es continua, es decir, $f^{-1}(U) = U \setminus \{+\infty\}$ es abierto para todo U en $(\mathbb{C} \cup \{+\infty\}, d_C)$. Observemos que $\psi = \varphi^{-1} : (\mathbb{S}^2 \setminus \{(0,0,1)\}, \|\cdot\|_{\text{euc}}) \to (\mathbb{C}, |\cdot|)$,

$$\psi(x) = \frac{x_1 + x_2 i}{1 - x_3}$$

es continua, luego $\psi \circ \varphi : (\mathbb{C}, d_C|_{\mathbb{C}}) \to (\mathbb{C}, |\cdot|)$ es continua, concluyendo que las vecindades de todo punto $z \in \mathbb{C}$ coinciden en \mathcal{T}_C y en la topología generada por d_C .

Por otro lado, considerando $z \in B(+\infty, R)$, tenemos que

$$d_C(z, +\infty) = \frac{2}{\sqrt{|z|^2 + 1}} < R \iff \frac{2}{R} < \sqrt{|z|^2 + 1}$$
$$\iff \frac{4}{R^2} - 1 < |z|^2$$

Notando que

$$d_C(z, +\infty) = \frac{2}{\sqrt{|z|^2 + 1}} \le 2$$

Luego, si R>2, entonces $B(+\infty,R)=\mathbb{C}\cup\{+\infty\}$, por tanto basta considerar $R\leq 2$. De esta forma

$$d_C(z, +\infty) < R \Longleftrightarrow \frac{4}{R^2} - 1 < |z|^2 \Longleftrightarrow |z| > \sqrt{\frac{4}{R^2} - 1} =: \tilde{R}$$

Es decir, $B(+\infty, R) = A(0; \tilde{R}, +\infty) \cup \{+\infty\}$, de donde concluimos que $(\mathbb{C} \cup \{+\infty\}, \mathcal{T}_C) \cong (\mathbb{C} \cup \{+\infty\}, d_C)$.

3. Concluya que $(\mathbb{C} \cup \{+\infty\}, \mathcal{T}_C)$ es un espacio métrico compacto.

Demostración. En 2 probamos que $(\mathbb{C} \cup \{+\infty\}, \mathcal{T}_C)$ es metrizable y $(\mathbb{C} \cup \{+\infty\}, \mathcal{T}_C) \cong (\mathbb{C} \cup \{+\infty\}, d_C)$. Finalmente, notando que $(\mathbb{S}^2, \|\cdot\|_{\text{euc}})$ es compacto y $(\mathbb{S}^2, \|\cdot\|_{\text{euc}}) \cong (\mathbb{C} \cup \{+\infty\}, d_C)$ podemos concluir que $(\mathbb{C} \cup \{+\infty\}, \mathcal{T}_C) \cong (\mathbb{S}^2, \|\cdot\|_{\text{euc}})$ y por tanto es compacto.

Comentario. Es general, agregar $\{+\infty\}$ a un espacio topológico se conoce como *compactificación por un punto* y, por ejemplo en \mathbb{R} , se obtiene que $\mathbb{R} \cup \{+\infty\} \cong \partial \mathbb{D}$ es una circunferecia.

Problema 2

Pruebe que toda función meromorfa en $\mathbb{C} \cup \{+\infty\}$ es una función racional.

Demostración. Sea $f \in \mathfrak{M}(\mathbb{C} \cup \{+\infty\})$, entonces f debe tener una singularidad removible o un polo en $z = +\infty$.

Si f tiene una singularidad removible en $+\infty$, entonces f(1/z) tiene una singularidad removible en z=0, es decir, existe R>0 y $F\in\mathcal{O}(\overline{D}(0,R))$ tal que F(z)=f(1/z) para todo $z\in\overline{D}(0,R)\setminus\{0\}$, es decir F(1/z)=f(z) es holomorfa en $A(0;R,+\infty)$ y por tanto f tiene finitos polos. Además, si f tiene una cantidad infinita de ceros, como $\mathbb{C}\cup\{+\infty\}$ es compacto, f tiene un cero z^* que es punto de acumulación. Si el punto de acumulación es un punto $z^*\in\mathbb{C}$, entonces f es la función nula. En caso contrario, existe una sucesión de ceros tal que $z_n\to+\infty$.

Consideremos $w_n = 1/z_n$ para todo $n \in \mathbb{N}$, y eliminando términos de ser necesario para que $w_n \in \overline{D}(0,R)$, tenemos que

$$F(w_n) = 0 \quad \forall n \in \mathbb{N} \quad \Longrightarrow F(0) = 0 \quad \text{por continuidad}$$

concluyendo que F tiene un cero que es un punto de acumulación y por tanto F es una función nula. De esta forma, f debe tener finitos ceros.

Si f tiene un polo en $+\infty$, entonces f(1/z) tiene un polo en cero y por tanto existe $g \in \mathcal{O}(\overline{D}(0,R))$ tal que

$$f(1/w) = F(w) = wg(w), \quad \forall w \in \overline{D}(0,R)$$

Si z = 1/w, entonces

$$f(z) = \frac{1}{z}g(1/z), \qquad \forall z \in A(0; R, +\infty)$$

De esta forma, f tiene todos sus polos (distintos a $+\infty$) en $\overline{D}(0,R)$ y por tanto sus polos son finitos. Además, como f tiene un polo en $+\infty$

$$\lim_{z \to 0} f(1/z) = +\infty \Longrightarrow \lim_{|z| \to +\infty} |f(z)| = +\infty$$

Es decir, existe R > 0 tal que |f(z)| > 1 para todo $z \in A(0; R, +\infty)$. Así, f tiene finitos ceros.

En cualquiera de los casos anteriores, f tiene finitos ceros y finitos polos. Sean $\{p_1,\ldots,p_d\}$ los polos de f, entonces $f\in\mathcal{O}(\mathbb{C}\backslash\{p_1,\ldots,p_d\})$. Luego, existe $p(z)=\prod_{j=1}^N(z-z_j)$ polinomio y una función holomorfa $g\in\mathcal{O}^*(\mathbb{C}\backslash\{p_1,\ldots,p_d\})$ tal que

$$f(z) = p(z)g(z), \quad \forall z \in \mathbb{C} \setminus \{p_1, \dots, p_d\}$$

Como p no tiene polos, g tiene polos en p_1, \ldots, p_d . Como g no se anula, $1/g \in \mathcal{O}(\mathbb{C})$. Como 1/g es holomorfa, existe $h \in \mathcal{O}^*(\mathbb{C})$ tal que

$$\frac{1}{g} = qh,$$
 $q(z) = \prod_{k=1}^{d} (z - p_k)$

luego tenemos que $f(z) = \frac{p(z)}{q(z)h(z)}$. Si f tiene una singularidad removible en $+\infty$,

$$\lim_{|z|\to +\infty} \left|\frac{p(z)}{q(z)h(z)}\right| = \lim_{|z|\to +\infty} |f(z)| = \lim_{z\to 0} |f(1/z)| \in \mathbb{C}$$

Si f tiene un polo en $+\infty$,

$$\lim_{|z|\to +\infty} \left| \frac{p(z)}{q(z)h(z)} \right| = \lim_{|z|\to +\infty} |f(z)| = \lim_{z\to 0} |f(1/z)| = +\infty$$

En cualquiera de los casos anteriores tenemos que h crece de manera polinomial, pero h no tiene ceros, por tanto h es constante, concluyendo que f es una función racional.

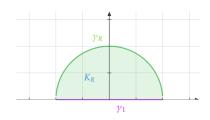
Problema 3

Use integración de contorno para mostrar que

$$\int_{-\infty}^{+\infty} \frac{e^{-2\pi i x \xi}}{(1+x^2)^2} dx = \frac{\pi}{2} (1+2\pi |\xi|) e^{-2\pi |\xi|}$$

Solución. Para $\xi < 0$, consideremos el compacto

$$K_R := \{ z \in \mathbb{C} : |z| \le R, \ \text{Im}(z) \ge 0 \}$$



Para $R>1,\ K_R$ tiene un polo $(z_0=i)$ de $f(z)=\frac{e^{-2\pi iz\xi}}{(1+z^2)^2}.$ Calculando el residuo de f tenemos

$$\operatorname{Res}(f,i) = \lim_{z \to i} \frac{d}{dz} \left[(z-i)^2 \frac{e^{-2\pi i z \xi}}{(1+z^2)^2} \right] = \lim_{z \to i} \frac{d}{dz} \left[\frac{e^{-2\pi i z \xi}}{(z+i)^2} \right]$$

$$= \lim_{z \to i} \frac{-2\pi i \xi e^{-2\pi i z \xi} (z+i)^2 - 2(z+i) e^{-2\pi i z \xi}}{(z+i)^4}$$

$$= \frac{-2\pi i (-4) \xi e^{2\pi \xi} - 2(2i) e^{2\pi \xi}}{(2i)^4}$$

$$= -\frac{i}{4} e^{2\pi \xi} (1 - 2\pi \xi)$$

Para γ_R , consideremos $z(t)=Re^{it}$, luego $z'(t)=Rie^{it}$, con $t\in[0,\pi]$. Así, tenemos que

$$\begin{split} |I_1| &= \left| \int_{\gamma_R} \frac{e^{-2\pi i z \xi}}{(1+z^2)^2} dz \right| = \left| \int_0^\pi \frac{e^{-2\pi i \xi R \exp(it)}}{(1+R^2 e^{2it})} Rie^{it} dt \right| \\ &\leq \int_0^\pi \frac{e^{2\pi \xi R \sin(t)}}{|1+R^2 e^{2it}|^2} R dt \\ &= \int_0^\pi \frac{e^{2\pi \xi R \sin(t)}}{1+2R^2 e^{-2\sin(t)} + R^4 e^{-4\sin(t)}} R dt \end{split}$$

Como $\xi < 0$, $e^{2\pi\xi R\sin(t)} \to 0$ cuando $R \to +\infty$, por tanto $I_1 \to 0$. Por otro lado,

$$I_2 = \int_{\gamma_1} \frac{e^{-2\pi iz\xi}}{(1+z^2)^2} dz = \int_{-R}^R \frac{e^{-2\pi ix\xi}}{(1+x^2)^2} dx \overset{R \to +\infty}{\longrightarrow} \int_{-\infty}^{+\infty} \frac{e^{-2\pi ix\xi}}{(1+x^2)^2} dx$$

Por el teorema del residuo, para R > 1

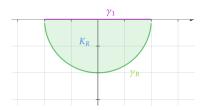
$$\int_{\partial K_R} \frac{e^{-2\pi i z \xi}}{(1+z^2)^2} dz = 2\pi i \text{Res}(f,i) = 2\pi i \left(-\frac{i}{4} e^{2\pi \xi} (1-2\pi \xi) \right) = \frac{\pi}{2} e^{2\pi \xi} (1-2\pi \xi)$$

Finalmente, tomando límite cuando $R \to +\infty$

$$\int_{-\infty}^{+\infty} \frac{e^{-2\pi i x \xi}}{(1+x^2)^2} dx = \frac{\pi}{2} e^{2\pi \xi} (1 - 2\pi \xi) = \frac{\pi}{2} e^{-2\pi (-\xi)} (1 + 2\pi (-\xi)) \qquad \forall \xi \in \mathbb{R}^{\le 0}$$

Para $\xi > 0$ procedemos de forma análoga, consideremos

$$\{z \in \mathbb{C} : |z| \le R, \operatorname{Im}(z) \le 0\}$$



Nuevamente, para R > 1, tenemos un solo polo $-i \in K_R$, luego, si calculamos el residuo tenemos

$$\operatorname{Res}(f, -i) = \lim_{z \to -i} \frac{d}{dz} \left[(z+i)^2 \frac{e^{-2\pi i z \xi}}{(1+z^2)^2} \right] = \lim_{z \to -i} \frac{d}{dz} \left[\frac{e^{-2\pi z \xi}}{(z-i)^2} \right]$$

$$= \lim_{z \to -i} \frac{-2\pi i \xi e^{-2\pi i z \xi} (z-i)^2 - 2(z-i)e^{-2\pi i z \xi}}{(z-i)^4}$$

$$= \frac{-2\pi i (-4) \xi e^{-2\pi \xi} - 2(-2i)e^{-2\pi \xi}}{(-2i)^4}$$

$$= \frac{i}{4} e^{-2\pi \xi} (1 + 2\pi \xi)$$

Tenemos que

$$\int_{\partial K_R} \frac{e^{-2\pi iz\xi}}{(1+z^2)^2} dz = \underbrace{\int_{\gamma_1} \frac{e^{-2\pi iz\xi}}{(1+z^2)^2} dz}_{=I_1} + \underbrace{\int_{\gamma_R} \frac{e^{-2\pi iz\xi}}{(1+z^2)^2}}_{=I_2}$$

Por el Teorema del Residuo, si R > 1

$$\int_{\partial K_R} \frac{e^{-2\pi i z \xi}}{(1+z^2)^2} dz = 2\pi i \left(\frac{i}{4} e^{-2\pi \xi} (1+2\pi \xi) \right) = -\frac{\pi}{2} e^{-2\pi \xi} (1+2\pi \xi), \qquad \forall \xi \in \mathbb{R}^{\geq 0}$$

De forma análoga a lo anterior, $I_2 \to 0$ y z(x) = -x, con $x \in [-R, R]$, luego

$$I_{1} = -\int_{-R}^{R} \frac{e^{-2\pi i x \xi}}{(1+x^{2})^{2}} dx \xrightarrow{R \to +\infty} -\int_{-\infty}^{+\infty} \frac{e^{-2\pi i x \xi}}{(1+x^{2})^{2}} dx$$

Tomando el límite $R \to +\infty$ tenemos

$$\int_{-\infty}^{+\infty} \frac{e^{-2\pi i x \xi}}{(1+x^2)^2} dx = \frac{\pi}{2} e^{-2\pi \xi} (1+2\pi \xi), \qquad \forall \xi \in \mathbb{R}^{\geq 0}$$

De donde concluimos

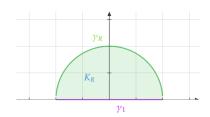
$$\int_{-\infty}^{+\infty} \frac{e^{-2\pi i x \xi}}{(1+x^2)^2} dx = \frac{\pi}{2} e^{-2\pi |\xi|} (1+2\pi |\xi|), \qquad \forall \xi \in \mathbb{R}$$

Problema 4

Sea Q un polinomio de grado $\operatorname{gr}(Q) \geq 2$ con raíces distintas contenidas en $\mathbb{C}\backslash\mathbb{R}$. Calcule

$$\int_{-\infty}^{+\infty} \frac{e^{-2\pi ix\xi}}{Q(x)} dx$$

en términos de las raíces de Q.



Solución. La función $z \mapsto \frac{e^{-2\pi i x z}}{Q(z)}$ tiene polos (simples) en los ceros z_1, \dots, z_n de Q, luego

$$\operatorname{Res}\left(\frac{e^{-2\pi i x z}}{Q(z)}, z_j\right) = \frac{e^{-2\pi i z_j \xi}}{Q'(z_j)}$$

Para $\xi \leq 0$ consideremos el compacto K_R como en el Problema 3. Para γ_R , consideramos la parametrización $z(t) = Re^{it}$, luego

$$|I_2| = \left| \int_{\gamma_R} \frac{e^{-2\pi i z \xi}}{Q(z)} dz \right| = \left| \int_0^{\pi} \frac{e^{-2\pi i \xi R \exp(it)}}{Q(R \exp(it))} iRe^{it} dt \right|$$

$$\leq \int_0^{\pi} \frac{e^{2\pi \xi R \sin(t)}}{|Q(R \exp(it))|} Rdt$$

Como $\xi \leq 0$, $e^{2\pi\xi R\sin(t)} \xrightarrow{R \to +\infty} 0$ o bien es 1, y como Q es un polinomio, $|Q(R\exp(it))| \xrightarrow{R \to +\infty} +\infty$, de donde concluimos que $|I_2| \xrightarrow{R \to +\infty} 0$. Por otro lado,

$$I_1 = \int_{\gamma_1} \frac{e^{2\pi i z \xi}}{Q(z)} dz = \int_{-R}^R \frac{e^{2\pi i x \xi}}{Q(x)} dx$$

Además, para $R > \max\{|z| : z \in V(Q)\}$ tenemos

$$I_1 + I_2 = \int_{K_R} \frac{e^{2\pi i z \xi}}{Q(z)} dz = 2\pi i \sum_{\substack{z \in V(Q) \\ \text{Im}(z) > 0}} \text{Res}\left(\frac{e^{-2\pi i z z}}{Q(z)}, z_j\right) = 2\pi i \sum_{\substack{z \in V(Q) \\ \text{Im}(z) > 0}} \frac{e^{-2\pi i z_j \xi}}{Q'(z_j)}$$

Tomando el límite cuando $R \to +\infty$

$$\int_{-\infty}^{+\infty} \frac{e^{2\pi i x \xi}}{Q(x)} dx = 2\pi i \sum_{\substack{z \in V(Q) \\ \operatorname{Im}(z) > 0}} \frac{e^{-2\pi i z_j \xi}}{Q'(z_j)}, \qquad \forall \xi \in \mathbb{R}^{\leq 0}$$

De forma análoga, para $\xi > 0$, considerando el compacto K_R dado por Observamos que $I_2 \to 0$, y que γ_1 se puede parametrizar por z(t) = -t, con $t \in [-R, R]$, luego, tomando el límite cuando $R \to +\infty$

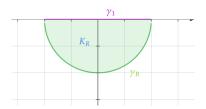
$$\int_{-\infty}^{+\infty} \frac{e^{2\pi i x \xi}}{Q(x)} dx = -2\pi i \sum_{\substack{z \in V(Q) \\ \operatorname{Im}(z) < 0}} \frac{e^{-2\pi i z_j \xi}}{Q'(z_j)}, \qquad \forall \xi \in \mathbb{R}^{>0}$$

En particular, si $Q(x)=x^2+1$, tenemos que $V(Q)=\{-i,i\}$. De esta forma, si $\xi\leq 0$,

$$\int_{-\infty}^{+\infty} \frac{e^{-2\pi i x \xi}}{x^2+1} dx = 2\pi i \frac{e^{-2\pi i (i) \xi}}{Q'(i)} = 2\pi i \frac{e^{-2\pi (-\xi)}}{2i} = \pi e^{-2\pi (-\xi)} \qquad \forall \xi \leq 0$$

Para $\xi > 0$,

$$\int_{-\infty}^{+\infty} \frac{e^{-2\pi i x \xi}}{x^2 + 1} dx = -2\pi i \frac{e^{-2\pi i (-i)\xi}}{Q'(i)} = -2\pi i \frac{e^{-2\pi \xi}}{-2i} = \pi e^{-2\pi \xi} \qquad \forall \xi > 0$$



Juntando lo anterior,

$$\int_{-\infty}^{+\infty} \frac{e^{-2\pi i x \xi}}{x^2 + 1} dx = \pi e^{-2\pi |\xi|}, \qquad \forall \xi \in \mathbb{R}$$