Tarea 3 Estructuras Algebraicas

Pedro Montero

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA

Debe **escoger sólamente** <u>dos</u> **problemas** (entre A, B y C) para resolver. A menos que se especifique lo contrario, denotaremos por A un anillo conmutativo con unidad no-nulo y por k un cuerpo.

Problema A (50 pts).

El objetivo de este problema es caracterizar los \mathbb{Z} -módulos inyectivos. Para ello, recordar que un \mathbb{Z} -módulo es lo mismo que un grupo abeliano.

En este contexto, y utilizando la notación aditiva, decimos que un grupo abeliano G es **divisible** si para todo $n \in \mathbb{N}^{\geq 1}$ el morfismo

$$G \xrightarrow{\cdot n} G, x \mapsto nx$$

es sobreyectivo. En otras palabras, para todo $y \in G$ y todo $n \in \mathbb{N}^{\geq 1}$, existe $x \in G$ tal que y = nx.

Además, recordemos el **criterio de Baer** que podrá ser utilizado directamente sin demostración¹:

Sea A un anillo y M un A-módulo. Entonces, M es un A-módulo inyectivo si y sólo si para todo ideal $I \subseteq A$ y todo morfismo de A-módulos $\varphi: I \to M$, existe $\Phi: A \to M$ morfismo de A-módulos tal que $\Phi|_{I} = \varphi$ (i.e., Φ extiende a φ).

Utilizando lo anterior, responda justificadamente las siguientes preguntas.

- 1. (10 pts) Probar que los grupos abelianos \mathbb{Q} y \mathbb{Q}/\mathbb{Z} son divisibles.
- 2. (10 pts) Utilizar el criterio de Baer para probar que \mathbb{Q} es un \mathbb{Z} -módulo inyectivo.
- 3. (15 pts) Probar que todo \mathbb{Z} -módulo inyectivo es divisible. Indicación: Considerar el morfismo inyectivo $\gamma: \mathbb{Z} \hookrightarrow \mathbb{Z}, \ a \mapsto an, \ con \ n \in \mathbb{N}^{\geq 1}$ fijo.
- 4. (15 pts) Utilizar el criterio de Baer para probar que si G es un grupo abeliano divisible, entonces G es un \mathbb{Z} -módulo inyectivo.

Problema B (50 pts).

El objetivo de este problema es estudiar una generalización importante del anillo de enteros \mathbb{Z} . Para esto, consideremos A un anillo y B una A-álgebra con morfismo estructural $\varphi:A\to B$. En particular, decimos que B es una **extensión** (de anillos) de A si φ es inyectiva, y en cuyo caso escribiremos símplemente $A\hookrightarrow B$ y $ab:=\varphi(a)b$ para todos $a\in A$ y $b\in B$.

Sea $A \hookrightarrow B$ una extensión de anillos y sea $x \in B$. Decimos que x es **entero** sobre A si existe $P \in A[X]$ polinomio con coeficiente principal 1 tal que P(x) = 0. Explícitamente,

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0 \tag{(*)}$$

para cierto $n \in \mathbb{N}^{\geq 1}$ y ciertos $a_i \in A$. Decimos que B es **entero** sobre A si todo elemento de B es entero sobre A. Más aún, puede utilizar directamente el siguiente hecho sobre módulos finitamente generados:

Sea $A \hookrightarrow B$ (resp. $B \hookrightarrow C$) una extensión de anillos tal que B es un A-módulo finitamente generado (resp. C es un B-módulo finitamente generado), y sea $\{b_1,\ldots,b_n\}\subseteq B$ (resp. $\{c_1,\ldots,c_m\}\subseteq C$) una familia generadora. Entonces C es un A-módulo finitamente generado, y $\{b_ic_j\}_{i\in\{1,\ldots,n\},\ j\in\{1,\ldots,m\}}$ es una familia generadora.

Utilizando lo anterior, responda justificadamente las siguientes preguntas.

- 1. (10 pts) Consideremos la extensión de anillos $\mathbb{Z} \hookrightarrow \mathbb{Q}$. Probar que $x \in \mathbb{Q}$ es entero sobre \mathbb{Z} si y sólo si $x \in \mathbb{Z}$.
- 2. (10 pts) Sea $A \hookrightarrow B$ una extensión de anillos y sea $S \subseteq A$ un subconjunto multiplicativo. Probar que si B es entero sobre A, entonces $S^{-1}B$ es entero sobre $S^{-1}A$.

 $^{^1\}mathrm{La}$ prueba pasa por una aplicación conveniente del Lema de Zorn.

- 3. (15 pts) Sea $A \hookrightarrow B$ una extensión de anillos, y sea $x \in B$. Probar que las siguientes propiedades son equivalentes:
 - (a) $x \in B$ es entero sobre A.
 - (b) $A[x] \stackrel{\mathsf{def}}{=} \{P(x), P \in A[T]\}$ es un A-módulo finitamente generado.
 - (c) Existe una A-álgebra C tal que C es un A-módulo finitamente generado y tal que $A[x] \subseteq C \subseteq B$.

Indicación: Para probar que (a) implica (b), probar que si $x \in B$ cumple la ecuación (\star) entonces A[x] está generado por $\{1, x, x^2, \dots, x^{n-1}\}$ como A-módulo. Para probar que (c) implica (a), considerar el endomorfismo de A-módulos $\varphi: C \to C$, $m \mapsto xm \ y \ P \in A[T]$ tal que $P(\varphi) = 0$ dado por el teorema de Cayley-Hamilton. Calcular $P(\varphi)(1)$.

4. (15 pts) Sea $A \hookrightarrow B$ una extensión de anillos. Definimos la clausura integral de A en B mediante

$$\overline{A} := \{x \in B \text{ tal que } x \text{ es entero sobre } A\}.$$

Probar que \overline{A} es una A-álgebra.

Indicación: Basta probar que si $x,y \in B$ son enteros sobre A, entonces $x \pm y \in B$ y $xy \in B$ también lo son. Para esto último, probar usando (3b) que $C := A[x,y] \stackrel{\mathsf{def}}{=} \{P(x,y),\ P \in A[T,S]\}$ es un A-módulo finitamente generado. Concluir mediante (3c), notando que $A[z] \subseteq C$ donde $z = x \pm y$ o z = xy.

Cultura general: Un cuerpo de números K es un cuerpo tal que $\mathbb{Q} \subseteq K$ y tal que K es un \mathbb{Q} -espacio vectorial de dimensión finita (eg. $\mathbb{Q}(i) \cong \mathbb{Q}[X]/\langle X^2+1\rangle$). Dado un cuerpo de números K, el **anillo de enteros** de K es la clasura integral de \mathbb{Z} en K (i.e., los elementos $x \in K$ que verifican una ecuación polinomial de la forma $x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 = 0$ con $a_i \in \mathbb{Z}$), y se denota por \mathcal{O}_K . Es un objeto fundamental en teoría de números, y la similitud en la notación con los anillos de funciones regulares no es casualidad.

Problema C (50 pts).

El objetivo de este problema es estudiar algunas propiedades importantes de la localización de módulos. Para esto, consideremos un anillo no-nulo A y un subconjunto multiplicativo $S \subseteq A$.

1. (10 pts) Sea $C = V(XY) \subseteq \mathbb{A}^2$ la variedad algebraica afín dada por la unión del eje X y el eje Y en \mathbb{A}^2 , y sea $A := \mathcal{O}(C) \cong \mathbb{C}[X,Y]/\langle XY \rangle$. Sea $p := (1,0) \in C$ y

$$S := \{ f \in \mathcal{O}(C) \mid f(p) \neq 0 \}.$$

Probar que S es un subconjunto multiplicativo de A y que los elementos $\frac{y}{1}$ y $\frac{0}{1}$ son iguales² en $S^{-1}A$, aquí $x = [X] \in A$ e $y = [Y] \in A$ son las clases de X e Y en el anillo cociente A.

2. (10 pts) Probar que la localización $S^{-1}A$ y el morfismo canónico $\iota_S:A\to S^{-1}A,\ a\mapsto \frac{a}{1}$ verifican la siguiente propiedad universal:

Para todo morfismo de anillos $\varphi: A \to B$ tal que $\varphi(S) \subseteq B^{\times}$, existe un único morfismo de anillos $\widehat{\varphi}: S^{-1}A \to B$ tal que $\widehat{\varphi} \circ \iota_S = \varphi$ (i.e., $\widehat{\varphi}(\frac{a}{1}) = \varphi(a)$ para todo $a \in A$).

Indicación: Probar que la propiedad universal implica que necesariamente $\widehat{\varphi}(\frac{a}{s}) = \varphi(a)\varphi(s)^{-1}$ (unicidad), y que dicha expresión está bien definida (existencia).

- 3. (15 pts) Sea $\varphi: M \to N$ un morfismo de A-módulos y sea $S^{-1}\varphi: S^{-1}M \to S^{-1}N, \frac{m}{s} \mapsto \frac{\varphi(m)}{s}$ el morfismo de $S^{-1}A$ -módulos asociado. Probar que $\ker(S^{-1}\varphi) = S^{-1}\ker(\varphi)$ y que $\operatorname{Im}(S^{-1}\varphi) = S^{-1}\operatorname{Im}(\varphi)$. Indicación: Considerar la sucesión exacta corta asociada a φ que involucra $\ker(\varphi)$, M e $\operatorname{Im}(\varphi)$.
- 4. (15 pts) Sea M un A-módulo. Probar que si $M_{\mathfrak{m}}=0$ para todo ideal maximal $\mathfrak{m}\subseteq M$, entonces M=0. Indicación: Asumir que $M\neq 0$ y considerar $m\in M$ no-nulo. Probar que

$$ann(m) := \{ a \in A \text{ tal que } am = 0 \}$$

es un ideal propio de A, y que existe \mathfrak{m} ideal maximal tal que ann $(m) \subseteq \mathfrak{m}$ y tal que $M_{\mathfrak{m}} \neq 0$.

²Observación: La importancia de este ejercicio es ratificar algebraicamente la intuición de que la función y y la función 0 coinciden en una vecindad de p=(1,0) en C. Además, muestra porqué es necesario incluir la multiplicación por un elemento $t \in S$ en la relación de equivalencia que define $S^{-1}A$.

Bonus (12 puntos): El objetivo de este problema es probar que todo \mathbb{Z} -módulo puede ser visto dentro de un \mathbb{Z} -módulo invectivo. Para esto, puede usar demostración el hecho que:

- (a) Un \mathbb{Z} -módulo G es inyectivo si y sólo si G es un grupo abeliano divisible (ver Problema A).
- (b) Todo grupo abeliano G es cociente de un grupo abeliano libre L (no necesariamente finitamente generado). Explícitamente, podemos considerar $L := \mathbb{Z}^{(G)}$ como la suma directa de |G| copias de \mathbb{Z} y $L \twoheadrightarrow G$, $e_g \mapsto g$, donde $\{(e_g)\}_{g \in G}$ denota la base canónica de $\mathbb{Z}^{(G)}$.
- (c) Si G es un grupo abeliano y Λ un conjunto, entonces $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}^{(\Lambda)}, G) \cong \bigoplus_{\lambda \in \Lambda} G \stackrel{\mathsf{def}}{=} G^{(\Lambda)}$.

Utilizando lo anterior, responda justificadamente las siguientes preguntas.

- (i) Probar que si G es un grupo abeliano divisible y $H \subseteq G$ un subgrupo, entonces G/H es un grupo abeliano divisible. En particular, cocientes de \mathbb{Z} -módulos invectivos también son invectivos.
- (ii) Sea $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ una familia arbitraria de \mathbb{Z} -módulos inyectivos. Probar que $\bigoplus_{{\lambda}\in\Lambda}M_{\lambda}$ es un \mathbb{Z} -módulo inyectivo. Indicación: Usar el criterio de Baer. Notar que si $I_n=\langle n\rangle\subseteq\mathbb{Z}$ y $\varphi:I_n\to\bigoplus_{{\lambda}\in\Lambda}M_{\lambda}$ es un morfismo de \mathbb{Z} -módulos, entonces $\mathrm{Im}(\varphi)\cap M_{\lambda}\neq\{0\}$ sólo para un número finito de ${\lambda}\in\Lambda$.
- (iii) Sea G un grupo abeliano no-nulo arbitrario, y definamos $\check{G} := \operatorname{Hom}_{\mathbb{Z}}(G, \mathbb{Q}/\mathbb{Z})$, y consideremos la aplicación \mathbb{Z} -bilineal

$$\check{G} \times G \longrightarrow \mathbb{Q}/\mathbb{Z}, \ (f, x) \mapsto f(x).$$

Probar que el morfismo $G \to \check{G}$, $x \mapsto \operatorname{ev}_x$ es inyectivo, donde $\operatorname{ev}_x(f) := f(x)$ para todo $f \in \check{G}$. Indicación: Sea $x_0 \in G$ no-nulo. Probar que existe un morfismo de \mathbb{Z} -módulos $f_0 : \langle x_0 \rangle_{\mathbb{Z}} \to \mathbb{Q}/\mathbb{Z}$ tal que $f_0(x_0) \neq 0$ y deducir, usando el hecho que \mathbb{Q}/\mathbb{Z} es divisible, que existe $f : G \to \mathbb{Q}/\mathbb{Z}$ tal que $f(x_0) \neq 0$.

(iv) Probar que para todo grupo abeliano G existe un grupo abeliano M que es inyectivo como \mathbb{Z} -módulo y tal que $G \hookrightarrow M$ puede ser visto como un sub-grupo.

Indicación: Probar que si L es un grupo abeliano libre y $L \twoheadrightarrow \check{G}$ es un morfismo sobreyectivo, entonces $\check{\check{G}} \hookrightarrow \check{L}$

es un morfismo inyectivo. Usar (ii) para deducir que \check{L} es un \mathbb{Z} -módulo inyectivo, y concluir usando (iii). Otra alternativa es concluir utilizando (i) y (ii).