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Abstract

We study the asymptotic growth of the number of rational points of bounded height on
smooth projective split toric varieties with Picard rank 2 defined over a global field K, with
respect to Arakelov height functions associated to big metrized line bundles. In the case of
char(K) = 0, we use Hermitian vector bundles to relate the height zeta function over a certain
open subset of our studied varieties with the height zeta function of the base projective space,
thereby studying its analytical behavior. In the case of char(K) > 0, we use the description of
the equations defining the variety to perform explicit calculations on the height zeta function
over the corresponding open subset.
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Introduction

Given an equation with integer coefficients (or a system of equations), an ancient problem
is finding solutions in the ring of integers, which in some cases is equivalent to finding them
in the field of rational numbers. Although this is a beautiful problem, it is generally very
difficult to tackle. A significant portion of modern ideas for addressing this problem involves
considering the algebraic varieties that the equation (or system) defines in some affine or
projective space and using the available machinery in algebraic geometry.

There is a correspondence between the non-trivial solutions of the equations and the ra-
tional points of the variety. In this sense, given an abstract variety X defined over a field K
(assumed not algebraically closed), many questions arise about its rational points, that is, the
set of morphisms Spec(K) → X . These questions cover, for example, the existence and
nature of its cardinality. In the case of finite cardinality, one might ask for the exact number
or even dare to list all of them. In the case of infinite cardinality, questions about asymp-
totic low or high bounds and their distribution on the variety arise. It is this latter nature of
investigating the rational points of varieties that we will adopt.

To study the distribution of rational points, it is common to work with the concept of
height and investigate the asymptotic behavior of rational points of bounded height. Heights
are a way to measure the arithmetic complexity of these points.

In the projective space Pn, for Q-rational points, there is the naive height given by:

HPn(x) = max{|x0|, |x1|, . . . , |xn|}

where x = [x0 : x1 : . . . : xn] ∈ Pn(Q), with integer coordinates xi and gcd(x0, x1, . . . , xn) =
1. This height ensures that the set {x ∈ Pn(Q) : HPn(x) ≤ B} of rational points with
bounded height is finite.

For a global field K, the naive height is given by

HPn(x) =
∏

v∈Val(K)

max{|x0|v, |x1|v, . . . , |xn|v}

which is well-defined for all x ∈ Pn(K) by the product formula.

Given a smooth projective algebraic variety X defined over a global field K and L an
ample line bundle over X , with L⊗m very ample that induces the closed embedding ι : X ↪→
Pn, we define the height on the rational points of X by:

HL(x) = HPn(ι(x))
1
m
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for x ∈ X(K). This definition leverages the naive height on projective space and translates
it to the context of the variety X via the embedding induced by the power L⊗m of the line
bundle L that is very ample.

In this way, we are interested in studying the asymptotic behavior of the cardinality

N(X,L,B) := #{x ∈ X(K) : HL(x) ≤ B}.

It is known that this number can be dominated by the number of rational points in certain
subvarieties of X called accumulating subvarieties. Therefore, to have a proper analysis of
the asymptotic behavior of rational points of bounded height, it is necessary to remove these
subvarieties, and in the complementary open subset U , Manin conjectured that in the case
where the anticanonical bundle is ample, that is, the variety X is Fano, we have

N(U,−KX , B) = CB logBt−1(1 + o(1)), B → ∞.

Furthermore, t should be equal to rkPic(X).

In 1996, Batyrev and Tschinkel [3] provided a counterexample to the first version of
Manin’s Conjecture. Nowadays, the current expectation is as follows in the case of number
fields (see e.g. [28, Formule empirique 5.1] or [1, Conjecture 6.3.1.5] for a detailed discussion
and the precise definition of the relevant concepts).

Conjecture 1 (Manin–Peyre). Let X be an almost Fano variety1 over a global field K,
with dense set of rational points X(K), finitely generated Λeff(XK) and trivial Brauer
group Br(XK). Let H = H−KX

be the anticanonical height function, and assume that there
is an open subset U of X that is the complement of the weakly accumulating subvarieties
on X with respect to H . Then, there is a constant C > 0 such that

N(U,H−KX
, B) ∼ CB(logB)rkPic(X)−1 as B → ∞. (0.0.1)

Moreover, the leading constant is of the form

C = α(X)β(X)τH(X),

where

α(X) :=
1

(rkPic(X)− 1)!

∫
Λeff(X)∨

e−⟨−KX ,y⟩dy,

β(X) := #H1(Gal(K/K),Pic(XK)),

and τH(X) is the Tamagawa number of X with respect to H (see Section 1.5.2).

There is also a conjecture, originating in the work of Batyrev and Manin [2], concerning
the asymptotic growth of the number

N(U,HL, B) = #{P ∈ U(K) : HL(P ) ≤ B},
1Following [28, Définition 3.1], an almost Fano variety is a smooth, projective, geometrically integral

variety X defined over a field K, with H1(X,OX) = H2(X,OX) = 0, torsion-free geometric Picard
group Pic(XK) and −KX big.
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when considering height functions HL associated to big metrized line bundles L on a va-
riety X as above, and for appropriate open subsets U ⊆ X . More precisely, if we denote
by τ ≺ σ whenever τ is a face of a cone σ, then one defines the following classical numerical
invariants for a big line bundle L on X:

a(L) := inf{a ∈ R : aL+KX ∈ Λeff(X)},
b(L) := max{codim(τ) : a(L)L+KX ∈ τ ≺ Λeff(X)},

which measure the position of L inside the cone Λeff(X). With this notation, the more general
version of the above conjecture states that there exists a constant C > 0 such that

N(U,HL, B) ∼ CBa(L)(logB)b(L)−1 as B → ∞. (0.0.2)

We refer the reader to [4] for extensions, and a conjectural description of the leading con-
stant C in terms of geometric, cohomological and adelic invariants associated to U and L.

The above conjectures have been proven by various authors, either in specific examples
or in certain families of varieties (see for instance [36] for an account of such results).

Typically, asymptotic formulas of the form (0.0.1) and (0.0.2) are deduced, via a Taube-
rian theorem (see Section 1.6 for a precise statement), from analytic properties of the associ-
ated height zeta functions. More precisely, considering a height function HL associated to a
big metrized line bundle L, its height zeta function is defined as

ζU,L(s) :=
∑

P∈U(K)

HL(P )−s for s ∈ C with ℜ(s) ≫ 0.

If ζU,L(s) converges absolutely on ℜ(s) > a > 0, it has an analytic continuation to ℜ(s) >
a− ε, s ̸= a for some ε > 0 and it has a pole of order b ≥ 1 at s = a, then one obtains

N(U,HL, B) ∼ CBa(logB)b−1 as B → ∞, (0.0.3)

with
C :=

1

(b− 1)!a
lim
s→a

(s− a)bζU,L(s)

In this thesis we focus on smooth projective split toric varieties with Picard rank 2, and
consider Arakelov height functions associated to big metrized line bundles. In order to be
more precise, we recall a geometric result due to Kleinschmidt [19] stating that all smooth
projective toric varieties of Picard rank 2 are (up to isomorphism) of the form

X = P(OPt−1 ⊕ OPt−1(a1)⊕ · · · ⊕ OPt−1(ar)), (0.0.4)

where r ≥ 1, t ≥ 2, and 0 ≤ a1 ≤ · · · ≤ ar are integers. We refer to these varieties as
Hirzebruch–Kleinschmidt varieties.

As is well known, global fields are completely classified. These are number fields, i.e.,
finite extensions of Q, and global function fields, i.e., finite extensions of the rational function
field of a smooth, irreducible, geometrically integral curve defined over a finite field Fq. We
will deal with each of these cases separately.



4 INTRODUCTION

Number Fields case

For computational convenience, we choose a different normalization than the given in
(0.0.4) and put

Xd(a1, . . . , ar) := P(OPt−1 ⊕ OPt−1(−ar)⊕ · · · ⊕ OPt−1(ar−1 − ar)) ≃ X,

with d := r + t− 1 the dimension of Xd(a1, . . . , ar).

Our results show that these varieties can be naturally decomposed into a finite disjoint
union of subvarieties where explicit asympotic formulas for the number of rational points of
bounded height can be given, in the spirit of Schanuel’s work [34]. We achieve these results
by using suitable algebraic models for such varieties and by performing explicit computations
on the associated height zeta functions.

If X = Xd(a1, . . . , ar), then we consider the projective subbundle F := P(OPt−1(−ar)⊕
· · · ⊕OPt−1(ar−1 − ar)) and note that F ≃ Xd−1(a1, . . . , ar−1) when r > 1, while F ≃ Pt−1

when r = 1. Then, we define the “good open subset”

Ud(a1, . . . , ar) := X \ F.

We note that this open subset is larger than the dense toric orbit of X .

Our main result gives an asymptotic formula for N(Ud(a1, . . . , ar), HL, B) of the form (0.0.2),
with an explicit constant C = CL,K , for every big divisor class L ∈ Pic(X) that we equip
with a “standard metrization”. This general result is given in Section 2.10 (see Theorem 70).
In the case of the anticanonical line bundle wich in a smooth toric variety is always big, our
result take the following form

Theorem 2. Let X = Xd(a1, . . . , ar) be a Hirzebruch–Kleinschmidt variety of dimension d =
r + t − 1 over a number field K, let H = H−KX

denote the anticanonical height function
on X(K), and let U = Ud(a1, . . . , ar) be the good open subset of X . Then, we have

N(U,H,B) ∼ CB log(B) as B → ∞,

with

C :=
R2

Kh
2
K |∆K |−

(d+2)
2

w2
K(r + 1)(t+ (r + 1)ar − |a|)ξK(r + 1)ξK(t)

, (0.0.5)

where RK , hK ,∆K are the regulator, class number and discriminant of K, respectively, |a| :=∑r
i=1 ai and

ξK(s) :=

(
Γ(s/2)

2πs/2

)r1 ( Γ(s)

(2π)s

)r2

ζK(s),

with r1 and r2 the number of real and complex Archimedean places of K, respectively, and ζK
the Dedekind zeta function of K.

Remark 3. In Lemma 26 we show that

α(X) =
1

(r + 1)(t+ (r + 1)ar − |a|)
.
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Also, since X is a split toric variety, we have β(X) = 1 (this is well-known and follows
e.g. from [4, Remark 1.7 and Corollary 1.18] and [32, Lemma 2.21]). Hence, Theorem 2
together with the main theorem of [4] implies that the Tamagawa number of X with respect
to the anticanonical height function H−KX

is

τH(X) =
R2

Kh
2
K |∆K |−

(d+2)
2

w2
KξK(r + 1)ξK(t)

.

Since the good open subset U in Theorem 2 is obtained by removing from Xd(a1, . . . , ar)
the subbundle F , which is either another Hirzebruch–Kleinschmidt variety or a projective
space, we can also describe the asymptotic behaviour of the number N(F,H,B), provided
the restricted divisor class −KX |F is big in Pic(F ) (it is easily seen that when this is not the
case, one has N(F,H,B) = ∞ for every B ≥ 1). In general, the restricted divisor −KX |F
does not coincide with the anticanonical divisor −KF of F (see Section 2.3), and this is the
main reason why we are lead to study the asymptotic behaviour of N(U,HL, B) for height
functions HL associated to general big divisors. These ideas are illustrated in the following
example.

Example 4. Given integers 0 ≤ a1 ≤ a2 consider the Hirzebruch–Kleinschmidt threefold

X := X3(a1, a2) = P(OP1 ⊕ OP1(−a2)⊕ OP1(a1 − a2)),

with projection map π : X → P1 and good open subset U = U3(a1, a2). Using results
from Sections 2.2 and 2.3, we get that −KX = OX(3) ⊗ π∗(OP1(2 + 2a2 − a1)), and
the restriction −KX |F of the anticanonical divisor of X to the projective subbundle F =
P(OP1(−a2)⊕OP1(a1−a2)) corresponds, under the isomorphism F ≃ X2(a1) =: X ′, to the
line bundle L := OX′(3)⊗ (π′)∗(OP1(2 + 2a1 − a2)), where π′ : X ′ → P1 is the correspond-
ing projection map. If we write X ′ = U ′ ⊔ F ′ with U ′ = U2(a1) the good open subset of X ′

and F ′ its complement in X ′, then we have F ′ ≃ P1, and the restriction L|F ′ corresponds to
the line bundle M := OP1(2− a1 − a2). Hence, we have a disjoint decomposition

X = U ⊔ U ′ ⊔ F ′ ≃ U3(a1, a2) ⊔ U2(a1) ⊔ P1, (0.0.6)

and denoting by H = H−KX
the anticanonical height function, we obtain

N(U,H,B) ∼ CB log(B) as B → ∞,

with an explicit constant C > 0 by Theorem 2. Now, by Lemma 33 in Section 2.3 the line
bundle L is big if and only if a2 < 2a1 + 2, in which case Theorem 70 in Section 2.10 gives

N(U ′, H,B) = N(U2(a1), HL, B) ∼ C ′B
a1+2

2a1+2−a2 as B → ∞,

with another explicit constant C ′ > 0. Finally, by Lemma 34 M is big if and only if a1+a2 <
2, in which case Schanuel’s estimate, in the form of Corollary 66 in Section 2.9, gives

N(F ′, H,B) = N(P1, HM , B) ∼ C ′′B
2

2−a1−a2 as B → ∞,

with yet another explicit constant C ′′ > 0. We can then distinguish several different cases in
order to compare the contribution of each of the subsets U,U ′, F ′ in the decomposition (0.0.6)
to the asymptotic growth of the number of rational points of bounded anticanonical height
on X , as represented in the following table.
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Case Is L big? Is M big? Comparison

(a1, a2) = (0, 0) Yes Yes
N(F ′, H,B) = o(N(U ′, H,B))
N(U ′, H,B) = o(N(U,H,B))
N(U,H,B) ∼ CB log(B)

(a1, a2) = (0, 1) Yes Yes
N(U,H,B) = o(N(U ′, H,B))
N(U ′, H,B) ∼ C ′B2

N(F ′, H,B) ∼ C ′′B2

1 ≤ a1 < a2 < 2a1 + 2 Yes No
N(F ′, H,B) = ∞
N(U,H,B) = o(N(U ′, H,B))

N(U ′, H,B) ∼ C ′B
a1+2

2a1+2−a2

1 ≤ a1 = a2 Yes No
N(F ′, H,B) = ∞
N(U ′, H,B) = o(N(U,H,B))
N(U,H,B) ∼ CB log(B)

2a1 + 2 ≤ a2 No No
N(F ′, H,B) = ∞
N(U ′, H,B) = ∞
N(U,H,B) ∼ CB log(B)

Since the values r = t = 2 are fixed, the constants C,C ′, C ′′ above depend only on the
base field K and on the coefficients a1, a2. In order to give a concrete numerical example,
let us for simplicity assume K = Q and choose (a1, a2) = (0, 1). Using that ξQ(s) =
(2πs/2)−1Γ(s/2)ζ(s), we get

C =
π2

6ζ(3)ζ(2)
= 0.83190737 . . . ,

while the values of the constants C ′ and C ′′ can be extracted from Example 77 and Corol-
lary 66, and are given by

C ′ =
3

π

(
1 +

945ζ(3)

16π3

)
= 3.14147564 . . . , C ′′ =

π

2ζ(2)
=

3

π
= 0.95492965 . . . .

In particular, this shows that U ′ “contributes more” than F ′ to the number of rational points
of bounded anticanonical height in X3(0, 1).

In the general case, our strategy to study the number of rational points of bounded height
on a Hirzebruch–Kleinschmidt varierty is as follows: Given X = Xd(a1, . . . , ar) we start by
writing

X ≃ Ud(a1, . . . , ar) ⊔ Ud−1(a1, . . . , ar−1) ⊔ · · · ⊔ Ut(a1) ⊔ Pt−1. (0.0.7)

Then, starting with the anticanonical height function H−KX
on X(K), we give simple crite-

ria to decide if the induced height functions Hi on Ut+i−1(a1, . . . , ai)(K) (for 1 ≤ i ≤ r),
and H0 on Pt−1(K), are associated to big divisors in the corresponding Picard groups. Finally,
using Theorem 70 in Section 2.10.1 together with Schanuel’s estimate (Corollary 66 in Sec-
tion 2.9), we give explicit asymptotic formulas for the numbers N(Ud+i−r(a1, . . . , ai), Hi, B)
and N(Pt−1, H0, B), obtaining the counting of rational points of bounded height on each
piece of the decomposition (0.0.7). Note that this approach also works if we start with a
height function HL on X(K) associated to L ∈ Pic(X) big.
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Remark 5. Assume a1 = . . . = aj = 0 and 0 < aj+1 ≤ . . . ≤ ar, for some j ∈ {1, . . . , r−1}.
In this case, instead of (0.0.7), one can rather write

X ≃ Ud(a1, . . . , ar)⊔Ud−1(a1, . . . , ar−1)⊔ · · · ⊔Ut+j(a1, . . . , aj+1)⊔ (Pt−1 ×Pj), (0.0.8)

and proceed as above by giving explicit asymptotic formulas for the numbers
N(Ud+i−r(a1, . . . , ai), Hi, B) (for j + 1 ≤ i ≤ r) and N(Pt−1 × Pj, Hj, B). This variant
seems more natural to us in this case since there is no gain in removing a closed subvariety
of Xt+j−1(a1, . . . , aj) = Pt−1 × Pj when counting rational points of bounded height on this
particular component in the decomposition (0.0.8).

We refer the reader to Section 2.10.4 where we apply the above strategy to the case of
Hirzebruch surfaces X = X2(a) with a > 0 an integer. In particular, we recover a classical
example going back to Serre [35], and revisited by Batyrev and Manin in [2] and by Peyre
in [27] (see Remark 81).

Our proof of Theorem 2 (and of Theorem 70 for general big divisors) is based on the
analytic properties of the associated height zeta functions, which we relate to height zeta
functions of projective spaces and to the zeta function ξK of the base field K. Then, as
usual, a direct application of a Tauberian theorem leads to the desired results. The analytic
continuation and identification of the first pole of our height zeta functions is achieved via
explicit computations, and by exploiting the concrete algebraic models of our Hirzebruch–
Kleinschmidt varieties. As such, it would be interesting to investigate if the techniques used
here can be applied to other families of algebraic varieties.
Remark 6. For the number fields case we came across with an unpublished manuscript of
Maruyama [22], where an asymptotic formula for the number of rational points of bounded
anticanonical height on Hirzebruch surfaces is proposed. Unfortunately, the proposed result
is incorrect due to convergence issues of the relevant height zeta function, that occur when
one does not remove the corresponding subbundle F of the Hirzebruch surface X2(a), as
we have done here in greater generality. We remark, nevertheless, that the approach used
in loc. cit. to study the analytic properties of height zeta functions of projective bundles has
served us as an inspiration for this present work (see Section 2.9).

Function fields case

It is natural to ask for analogous statements like Conjecture 1 and (0.0.2) for global fields
of positive characteristic. However, in the case that K is a global function field of positive
characteristic, the relevant height functions have values typically contained in qZ with q the
cardinality of the constant subfield Fq ⊂ K, and this implies that the associated height zeta
functions are invariant under s 7→ s+ 2πi

log(q)
. In particular, having a pole at a point s = a > 0

implies the existence of infinitely many poles on the line ℜ(s) = a, which makes it impossible
to apply a Tauberian theorem. Moreover, in this setting, it is hopeless to expect an asymptotic
formula of the form (0.0.3) since N(U,HL, q

n) = N(U,HL, q
n+ 1

2 ) would imply
√
q = 1 (as

explained in [8, Section 1.1]).

For this reason, for varieties defined over global fields of positive characteristic, the Manin
Conjecture is presented in terms of the analytical properties of the respective height zeta
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function. In [29], Peyre succeeds to do this in the case of flag varieties. As a variant of
Conjecture 1, it is then expected that the anticanonical height zeta function ζU,−KX

(s), for
appropriate open subsets U ⊆ X , converges absolutely for ℜ(s) > 1, it admits meromorphic
continuation to ℜ(s) > 1 − ε for some ε > 0, and it has a pole at s = 1 of order rkPic(X)
satisfying

lim
s→1

(s− 1)rkPic(X)ζU,−KX
(s) = α∗(X)β(X)τH(X), (0.0.9)

where

α∗(X) :=

∫
Λeff(X)∨

e−⟨−KX ,y⟩dy,

β(X) := #H1(Gal(Ksep/K),Pic(XKsep)),

and τH(X) is the Tamagawa number of X with respect to the anticanonical height func-
tion H = H−KX

defined by Peyre in [29, Section 2] in the case of global fields of positive
characteristic. Similarly, as a variant of (0.0.2), one expects ζU,L(s) to converge absolutely
for ℜ(s) > a(L) and have meromorphic continuation to ℜ(s) > a(L) − ε for some ε > 0
with a pole at s = a(L) of order b(L).

We show that similarly to the case of number fields, the varieties of Hirzebruch–Kleinschdmidt
can be naturally decomposed into a finite disjoint union of subvarieties where precise analytic
properties of the corresponding height zeta functions can be given. Hence, in this setting, we
go beyond the scope of the classical expectations mentioned above. We achieve these results
by using concrete algebraic models for such varieties and by performing explicit computa-
tions on the height zeta functions.

This ideas were motivated by the results of Bourqui in [6], [7] and [8], where the above
expectation for the anticanonical height zeta function is verified for toric varieties over global
fields of positive characteristic, with U the dense torus orbit. Bourqui’s work was inspired by
Batyrev and Tschinkel’s proof of Conjecture 1 for toric varieties over number fields [4].

As usual, in order to avoid accumulation of rational points of bounded height, we find it
necessary to restrict our attention to rational points in a dense open subset. To this purpose,
we define the good open subset Ud(a1, . . . , ar) ⊂ Xd(a1, . . . , ar) as the complement of the
closed subvariety define by the equation xtr = 0.

Our main results describe the analytic properties of the height zeta function ζU,L(s) for
the good open subset U := Ud(a1, . . . , ar) ⊂ Xd(a1, . . . , ar), for every big line bundle
class L ∈ Pic(X) that we equip with a “standard metrization”. For simplicity, we present
here the statement for L = −KX .

Theorem 7. Let X = Xd(a1, . . . , ar) be a Hirzebruch–Kleinschmidt variety of dimension
d = r+t−1 over a global function field K = Fq(C ), let H = H−KX

denote the anticanonical
height function on X(K), and let U = Ud(a1, . . . , ar) be the good open subset of X . Then,
the anticanonical height zeta function ζU,−KX

(s) converges absolutely for ℜ(s) > 1, and it is
a rational function on q−s. In particular, it has meromorphic continuation to C. Moreover, it
has a pole of order two at s = 1 with

lim
s→1

(s− 1)2ζU,−KX
(s) =

q(d+2)(1−g)h2
K

ζK(t)ζK(r + 1)((r + 1)ar − |a|+ t)(r + 1)(q − 1)2 log(q)2
,

(0.0.10)
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where hK is the class number of K, g is the genus of C and ζK is the zeta function of K.

As mentioned before, we go beyond the classical expectations and study further the height
zeta function of the complement of the good open subset inside Xd(a1, . . . , ar). This is
achieved by a natural decomposition of X = Xd(a1, . . . , ar) of the form

X ≃


Xd−1(a1, . . . , ar−1) ⊔ Ar ⊔

(⊔
2≤t′≤t Ut′+r−1(a1, . . . , ar)

)
if r > 1,

Pt−1 ⊔ A1 ⊔
(⊔

2≤t′≤t Ut′(a1)

)
if r = 1

(0.0.11)

(see Section 3.5.1 for details), which allows us to work inductively on the dimension of X ,
and decompose ζX,−KX

(s) as a finite sum of height zeta functions of projective (and affine)
spaces and height zeta functions of good open subsets of Hirzebruch–Kleinschmidt varieties
of dimension d = t+ r− 1, t+ r, . . . , t. On the one hand, height zeta functions of projective
(and affine) spaces are well understood (see Section 3.4). On the other hand, for each good
open subset U ′ = Ud′(a1, . . . , ar) in the decomposition (0.0.11), we get a contribution of a
height zeta function of the form ζU ′,L(s) with L ∈ Pic(Xd′(a1, . . . , ar)) generally distinct
from the corresponding anticanonical class. Nevertheless, provided L is big, we can still de-
scribe the analytic properties of ζU ′,L(s) in detail, see Theorems 98 and 100 in Section 3.5.3.
Note that the bigness condition on L is necessary, because when L is not big, ζU ′,L(s) has no
finite abscissa of absolute convergence. The following example illustrates these ideas.

Example 8. Given an integer a > 0, let us consider the Hirzebruch–Kleinschmidt three-
fold X := X3(a) with projection map π : X3(a) → P2. The decomposition (0.0.11) in this
case becomes

X ≃ P2 ⊔ A1 ⊔ U3(a) ⊔ U2(a). (0.0.12)

Put U := U3(a) and U ′ := U2(a), X ′ := X2(a) and let π′ : X ′ → P1 denote the correspond-
ing projection map. The anticanonical class on X is −KX = OX(2)⊗π∗(OP2(3−a)). Using
Theorem 7 we get that ζU,−KX

(s) converges absolutely in ℜ(s) > 1 and has meromorphic
continuation to C with a pole of order 2 at s = 1 with

lim
s→1

(s− 1)2ζU,−KX
(s) =

q5(1−g)h2
K

ζK(3)ζK(2)(a+ 3)2(q − 1)2 log(q)2
.

By Lemma 87 the component U2(a) in (0.0.12) contributes with the height zeta function ζU ′,L(s)
with L := OX′(2) ⊗ π∗(OP1(3 − a)) ∈ Pic(X ′) big but different from the anticanonical
class −KX′ . Nevertheless, by Theorem 98 we know that ζU ′,L has meromorphic continuation
to C with a simple pole at s = 1.

Now, by Lemma 87 the component P2 in (0.0.12) contributes with the height zeta func-
tion ζP2((3−a)s) where ζP2(s) denotes the standard height zeta function of P2 defined in Sec-
tion 3.4. We see that ζP2((3−a)s) has no finite abscissa of absolute convergence when a ≥ 3.
Assuming a < 3, we can apply Theorem 84 to deduce that ζP2((3−a)s) converges absolutely
for ℜ(s) > 3

3−a
and has meromorphic continuation to C with a simple pole at s = 3

3−a
> 1.

Finally, by Lemma 87 the component A1 in (0.0.12) contributes with the height zeta
function ζA1(2s) = ζP1(2s)−1, where ζP1(s) denotes the standard height zeta function of P1.
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In particular, by Theorem 84 we know that ζA1(2s) converges absolutely in ℜ(s) > 1 and has
meromorphic continuation to s ∈ C with a simple pole at s = 1.

We conclude:

1. If a = 1, 2, then the number of rational points of bounded anticanonical height in X3(a)
is “dominated” by the number of those points in the component P2 in (0.0.12).

2. If a ≥ 3, then the component P2 in (0.0.12) has “too many” rational points of bounded
height (in fact, N(P2,−KX , B) = ∞ for all B ≥ 1).

In both cases, we see that only after removing the closed subvariety P2 ⊂ X3(a) we obtain a
height zeta function

ζX\P2,−KX
(s) := ζA1(2s) + ζU,−KX

(s) + ζU ′,L(s)

satisfying the analogue of Conjecture 1 over global function fields.

We can also include here the easy case a = 0, namely X = X3(0) ≃ P1 × P2. It follows
from Theorem 100 that ζX,−KX

(s) converges absolutely on ℜ(s) > 1, has meromorphic
continuation to C and has a pole of order two at s = 1 with

lim
s→1

(s− 1)2ζX,−KX
(s) =

q5(1−g)h2
K

ζK(3)ζK(2)6(q − 1)2 log(q)2
.

In particular, in this easy case, there is no need to remove a closed subvariety of X in order
to verify the analogue of Conjecture 1 over global function fields.

The techniques used were inspired by the work of Bourqui [6] on the anticanonical height
zeta function on Hirzebruch surfaces. Combining Bourqui’s ideas with some technical com-
putations, we are able to express the height zeta function ζU,L(s), for a good open subset of
a Hirzebruch–Kleinschmidt variety and for general big metrized line bundles L, as a rational
function of degree 2 on the Dedekind zeta function ζK(s) of the base field K. In that regard,
it would be interesting to investigate if this method can also be applied to other families of
algebraic varieties defined over global function fields.

We now proceed to describe the structure of this thesis.

In Chapter 1, we present a quick introduction to the necessary geometric concepts, includ-
ing line bundles, the effective cone, the ample cone, toric varieties, and toric bundles as well
as arithmetic aspects such as heights, height zeta functions, and a more detailed description
of Peyre’s constant.

In Chapter 2, we work on the case of number fields. To do this we revisit the theory
of Hermitian vector bundles over arithmetic curves and the notion of Arakelov degree of
a Hermitian line bundle. Additionally, we state the Poisson–Riemann–Roch formula, and
demonstrate several estimates on the number of non-zero sections of a Hermitian vector bun-
dle that are key in our proofs. Then we define a “standard (Arakelov) height function” on
the set of rational points of the projective space Pn, in terms of the Arakelov degree of tau-
tological Hermitian line bundles. With these ideas in mind, we revisit Maruyama’s proof of
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Schanuel’s estimate on the number of rational points of bounded standard height on projec-
tive spaces (see Corollary 66). Finally, we proceed to state and prove our main results on the
asymptotic growth of the number of rational points in Hirzebruch–Kleinschmidt varieties,
with respect to any big divisor class (Theorems 70 and 76), and provide more examples to
illustrate the scope of our results.

In Chapter 3, we work on the case of function fields. First, we present several lemmas
used in the proof of the Theorem 98. The proof is divided into four steps, with the central
idea being to relate the height zeta function of an open subset of the variety to the Dedekind
zeta function of the base field.



Chapter 1

Preliminaries

1.1 Some geometric concepts

Here we follow the exposition made by Tschinkel in [36].

Let X be a variety, which in this Thesis will be assumed to be irreducible, reduced and
separated schemes of finite type over the base field K, we refer the reader to [15] for details.
The Picard group of X is defined as

Pic(X) = {Line bundles over X}/isomorphism

endowed with the tensor product. The identity of Pic(X) is the trivial line bundle. Also we
have

Pic(X) = Div(X)/PDiv = Div(X)/(C(X)∗/C∗),

where Div(X) is the group of Cartier divisors and PDiv(X) is the subgroup of principal
Cartier divisors.

A Cartier divisor D = [(Ui, fi)] ∈ Div(X), induces a line bundle OX(D) given by the
transition functions gij = fi/fj ∈ O∗

X(Ui ∩ Uj).

Given L ∈ Pic(X) the induced rational application

φL : X 99K |H0(X,L)| = P(H0(X,L)∨) = {hyperplanes ⊂ H0(X,L)}

is defined by
x 7→ Mx := {s ∈ H0(X,L) such that s(x) = 0Lx}.

We say that L is

• very ample if φL is a closed embedding;

• ample if L⊗m is very ample for some m ∈ Z>0.

The Iitaka dimension of L ∈ Pic(X) is given by

κ(L) =

{
maxm∈Z>0 dim(φL⊗m(X)), if there exist m0 ∈ Z>0 such that H0(X,L⊗m0) ̸= {0},
−∞, in other case.
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We have κ(L) ∈ {−∞, 1, 2, . . . , dim(X)} and we say that L is big when κ(L) = dim(X).

Let C be an irreducible smooth projective algebraic curve. A Weil divisor over C has the
form D =

∑k
i=1 nipi with ni ∈ Z and pi ∈ C. We define the degree of D as

deg(D) =
k∑

i=1

ni.

For all D ∈ PDiv(C) we have deg(D) = 0 and a surjective homomorphism deg : Pic(C) →
Z.

Let now X be an irreducible projective algebraic variety, D ∈ Div(X) and C ⊂ X
an irreducible smooth curve. We define the intersection number between D and C by D ·
C := deg(OX(D)|C) ∈ Z. If C is not smooth, then we take the normalization morphism
ν : Cν → C and we define D · C := deg(ν∗(OX(D)|Cν )).

We say that two Cartier divisors D1, D2 are numerically equivalent if D1 · C = D2 · C
for all irreducible curve C ⊂ X . In such case we write D1 ≡ D2. The quotient group
NS(X) := Div(X)/ ≡ is called the Neron–Severi group of X . By Severi’s base theorem
we know that NS(X) is finitely generated, so, NS(X) ∼= Zr ⊕ torsion. The integer r =
rk(NS(X)) =: ρ(X) is called the Picard number of X .

Given a line bundle L ∼= OX(D), we say that L is nef if D · C ≥ 0 for all irreducible
curve C ⊂ X .

We have an exact sequence

0 → Pic0(X) → Pic(X) → NS(X) → 0,

where Pic0(X) are the divisors such that D · C = 0 for all irreducible curves C ⊂ X .

Given a projective variety X ⊂ Pn, via an explicit system of homogeneous equations, we
can easily write down at least one divisor on X , a hyperplane section L in this embedding.
Another divisor, the divisor of zeroes of a differential form of top degree on X , can also be
computed from the equations. In general, for an irreducible smooth algebraic variety X , we
define the canonical line bundle of X as

ωX := det(Ω1
X)

∼=
dim(X)∧

Ω1
X .

Furthermore, a canonical divisor is a divisor KX ∈ Div(X) such that ωX
∼= OX(KX). The

dual −KX is the anticanonical line bundle.

For an irreducible smooth projective algebraic variety X the Kodaira dimension of X ,
denoted by κ(X), is the Iitaka dimension of ωX .

Elements in Pic(X) corresponding to projective embeddings generate the ample cone
Λample(X) ⊂ Pic(X)R := Pic(X)⊕Z R; ample divisors arise as hyperplane sections of X in
a projective embedding. The closure Λnef(X) of Λample in Pic(X)R is called the nef cone.
An effective divisor is a sum with nonnegative coefficients of irreducible subvarieties of
codimension one. Their classes span the effective cone Λeff(X); divisors arising as hyper-
plane sections of projective embeddings of some Zariski open subset of X form the interior
of Λeff(X).
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In general, the computation of the ample and effective cones, and the position of KX with
respect to these cones, is a difficult problem. However, we have the following theorem.

Theorem 9. Let X be a smooth projective variety with −KX ∈ Λample. Then Λnef is a finitely
generated rational cone. If −KX is big and nef, then Λeff is finitely generated.

A very rough classification of smooth algebraic varieties is based on the position of the
anticanonical class with respect to the cone of ample divisors. Numerically this is reflected
in the value of the Kodaira dimension. We say that X is of general type if KX is ample and
κ(X) = dim(X). When −KX is ample and κ(X) = −∞, we say that X is a Fano variety
and we say that X is of intermediate type in the other cases e.g. when κ(X) = 0.

1.2 Toric varieties

We refer the reader to [11] for the general theory of toric varieties.

Let N ≃ Zd be a rank d lattice and M = HomZ(N,Z) its dual lattice. Let us de-
note by T = Spec(K[M ]) ≃ Gd

m the corresponding split algebraic torus, where K[M ] is
the K-algebra generated by M as a semigroup. We identify the lattice M with the group of
characters of the torus T and N with the one-parameter subgroups of T.

Let Σ be a fan in NR := N ⊗ R. This is, Σ is a finite collection of strongly convex,
rational polyhedral cones σ ⊂ NR containing all the faces of its elements, and such that for
every σ1, σ2 ∈ Σ, the intersection σ1∩σ2 is a face of both σ1 and σ2 (hence it is also in Σ). We
denote by Σ(1) the set of rays (i.e., one-dimensional cones) in Σ. More generally, for σ ∈ Σ
we denote by σ(1) = σ∩Σ(1) the set of rays on σ and, by abuse of notation, we identify rays
with their primitive generators, i.e., with the unique primitive element uρ ∈ N that generates
the ray ρ ∈ Σ(1). Also, given vector v1, . . . , vr ∈ NR we denote by cone(v1, . . . , vr) the cone
that they generate.

Given a cone σ ∈ Σ, its dual σ∨ := {m ∈ M : ⟨m,n⟩ ≥ 0 for all n ∈ σ} is a cone in
MR and Uσ = Spec(K[σ∨ ∩M ]) is the associated affine toric variety. The toric variety XΣ

associated to Σ is obtained by gluing the affine toric varieties {Uσ}σ∈Σ along Uσ1 ∩ Uσ2 ≃
Uσ1∩σ2 . It is a normal and separated variety that contains a maximal torus U{0} ≃ T as an
open subset and admits an effective regular action of the torus T extending the natural action
of the torus over itself. The toric variety XΣ is smooth if and only if Σ is regular, meaning
that every cone in Σ is generated by vectors that are part of a basis of N .

On a toric variety XΣ, each ray ρ ∈ Σ(1) corresponds to a prime T-invariant Weil divisor
Dρ, and the classes of Dρ with ρ ∈ Σ(1) generate the class group Cl(XΣ). In particular,
every Weil divisor D on X is linearly equivalent to

∑
ρ∈Σ(1) aρDρ for some integers aρ ∈ Z.

Similarly, the classes of the T-invariant Cartier divisor generate the Picard group Pic(XΣ).
If the fan Σ contains a cone of maximal dimension d = dimR(NR), then Pic(XΣ) is a free
abelian group of rank #Σ(1)− d.

The relevant toric varieties appearing in this paper are all smooth. We recall that on
smooth varieties every Weil divisor is Cartier, and in particular Cl(XΣ) ≃ Pic(XΣ).
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1.3 Toric vector bundles

Let X be an algebraic variety. A variety V is a vector bundle of rank r over X if there is
a morphism π : V → X and an open cover {Ui}i∈I of X such that:

1. For every i ∈ I , there exists an isomorphism

φi : π
−1(Ui)

∼−→ Ui × Ar,

such that p1 ◦ φi = π|π−1(Ui), where p1 denotes the projection onto the first coordinate.

2. For every pair i, j ∈ I there exists gij ∈ GLr(OX(Ui ∩ Uj)) such that the following
diagram is commutative:

(Ui ∩ Uj)× Ar

π−1(Ui ∩ Uj)

(Ui ∩ Uj)× Ar

φj |π−1(Ui∩Uj)

φi|π−1(Ui∩Uj)

Id×gij

The data {(Ui, φi)}i∈I satisfying (1) and (2) is called a trivialization for π : V → X . The gij
are called transition matrices, and Vp := π−1(p) ≃ Ar is called the fiber at p ∈ X .

Let π : V → X be a vector bundle of rank r and {(Ui, ϕi)}i∈I be a trivialization with
transition matrices gij . Then the functions Id×gij induce isomorphisms

Id×gij : (Ui ∩ Uj)× Pr−1 ∼−→ (Ui ∩ Uj)× Pr−1,

where gij ∈ PGLr(OX(Ui∩Uj)) is the projective map induced by gij . This gives gluing data
for a variety P(V ) and π induces a morphism

π : P(V ) → X,

with trivializations {(Ui, φi)}i∈I for P(V ) where

φi : π
−1(Ui)

∼−→ Ui × Pr−1.

The algebraic variety P(V ) constructed in this way is called the projective bundle associated
to V .

If E is a locally free sheaf over X of rank r, then E is the sheaf of sections of a vector
bundle πE : VE → X of rank r. In this case, we define the projectivization of E to be

P(E ) := P(V ∨
E ), (1.3.1)

where V ∨
E denotes the vector bundle dual to VE . The projective bundle P(E ) has fiber over

p ∈ X given by P(E )p = P(Wp) where Wp = (V ∨
E )p.
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Remark 10. Some authors define P(E ) as P(VE ), see e.g. [15, Chapter II, Section 7].

Let X be a toric variety defined by a fan Σ in NR as in Section 1.2. A toric vector
bundle over X is a vector bundle π : V → X such that the action of T on X extends to
an action on V in such a way that π is T-equivariant and the action is linear on the fibers.
The algebraic variety V is not toric in general, and Oda [25, §7.6] notes that the toric vector
bundles which are toric varieties are precisely the decomposables ones, i.e., those of the form
VE with E = OX(D0)⊕ · · · ⊕ OX(Dr) for some T-invariant Cartier divisors D0, . . . , Dr on
X .

For decomposables toric vector bundles VE → X of rank r + 1 we can construct the fan
that defines the projective bundle P(E ) → X as a toric variety following [11, §7.3]: Let
D0, . . . , Dr be T-invariant Cartier divisors, and write Di =

∑
ρ∈Σ(1) aiρDρ with aiρ ∈ Z for

i ∈ {0, . . . , r}. To construct the fan of VE we work in the vector space NR ⊕ Rr+1. We will
denote by e0, . . . , er the canonical basis of Rr+1 ⊂ NR ⊕ Rr+1 and write the elements of
NR⊕Rr+1 in the form u+λDe0+ · · ·+λrer, with u ∈ NR and λD, . . . , λr ∈ R. Then, given
σ ∈ Σ we define σ ⊂ NR ⊕ Rr+1 to be the Minkowski sum

σ := cone(uρ − a0ρe0 − · · · − arρer : ρ ∈ σ(1)) + cone(e0, . . . , er),

where uρ ∈ N is the primitive generator of the ray ρ ∈ σ(1). The set of cones σ where
σ ∈ Σ, together with their faces, defines a fan Σ ⊂ NR ⊕ Rr+1 for a toric variety XΣ with
a vector bundle structure XΣ → XΣ whose sheaf of sections is isomorphic to E . It follows
that XΣ ≃ VE .

Now consider P(E ) → XΣ, which is a projective bundle with fibers isomorphic to Pr.
To construct the fan of P(E ) we need to consider the dual sheaf E ∨ = OX(−D0) ⊕ · · · ⊕
OX(−Dr) and the associated vector bundle VE ∨ = V ∨

E . By the above construction, VE ∨ is
built from the cones

cone(uρ + a0ρe0 + · · ·+ arρer : ρ ∈ σ(1)) + cone(e0, . . . , er),

and their faces when σ ranges over all the cones σ ∈ Σ. The fan of P(E ) is obtained as
follows: for each σ ∈ Σ and i ∈ {0, . . . , r} we put Fi = cone(e0, . . . , êi, . . . , er), where êi
means that we omit the vector ei, and define

σi := cone(uρ + a0ρe0 + · · ·+ arρer : ρ ∈ σ(1)) + Fi ⊂ NR × Rr+1.

Let σi be the image of σi under the canonical projection NR ⊕ Rr+1 → NR ⊕ NR, where
NR = Rr+1/R(e0 + e1 + · · ·+ er). Then it follows from [11, Proposition 7.3.3] that:

Proposition 11. The cones {σi}σ∈Σ, i∈{0,...,r} and their faces form a fan ΣE in NR⊕NR whose
associated toric variety XΣE

is isomorphic to P(E ).

In practice, we will replace NR = Rr+1/R(e0+ e1+ · · ·+ er) by Rr with basis e1, . . . , er
and define e0 := −e1 − · · · − er. Hence, we put

Fi = cone(e0, . . . , êi, . . . , er) ⊂ Rr,

and for a cone σ ∈ Σ we get

σi = cone(uρ + (a1ρ − a0ρ)e1 + · · ·+ (arρ − a0ρ)er : ρ ∈ σ(1)) + Fi ⊂ NR ⊕ Rr.

The cones σi and their faces define a fan ΣE in NR ⊕ Rr for P(E ).
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1.4 Hirzebruch–Kleinschmidt varieties

Given integers r ≥ 1, t ≥ 2, 0 ≤ a1 ≤ . . . ≤ ar, consider the vector bundle

E := OPt−1 ⊕ OPt−1(a1)⊕ · · · ⊕ OPt−1(ar).

Here, as usual, we put OPt−1(ai) := OPt−1(aiH0) where H0 ⊂ Pt−1 is a hyperplane, which
we can choose as H0 = {x0 = 0} in homogeneous coordinantes [x0 : . . . : xt].

We can use Proposition 11 to describe the fan ΣE of the smooth toric variety P(E ). For
this, it is enough to describe the maximal cones in ΣE . Consider N ⊕ N = Zt−1 ⊕ Zr

with canonial bases u1, . . . , ut−1 and e1, . . . , er for N and N , respectively. As before, we set
u0 := −u1 − · · · − ut−1 and e0 := −e1 − · · · − er. Note that {u0, . . . ut−1} is the set of
primitive generators of the rays of a fan for the toric variety Pt−1 with u0 corresponding to
the divisor H0.

Put a0 := 0 and Di := aiH0 for i ∈ {0, . . . , r}. As in Section 1.3, we write Di =∑
ρ∈Σ(1) aiρDρ. For ρ ∈ Σ(1) with uρ = ui we define

vi := uρ+(a1ρ−a0ρ)e1+. . .+(arρ−a0ρ)er =

{
u0 + a1e1 + · · ·+ arer if i = 0,
ui if i ∈ {1, . . . , t− 1}.

Since the maximal cones of Pt−1 are {cone(u0, . . . , ûi, . . . , ut−1)}i∈{0,...,t−1} we see that
the maximal cones of ΣE are

cone(v0, . . . , v̂j, . . . , vt−1) + cone(e0, . . . , êi, . . . , er),

for j ∈ {0, . . . , t − 1} and i ∈ {0, . . . , r}. Therefore, the primitive generators of the rays of
ΣE are v0, . . . , vt−1, e0, e1, . . . , er (compare with [19, p. 256]).

Note that P(E ) has dimension

d := dim(P(E )) = r + t− 1.

Since ΣE contains cones of maximal dimension d and #ΣE = d + 2, we conclude that
Pic(P(E )) ≃ Z2. Conversely, Kleinschmidt [19] proved the following classification result of
smooth projective1 varieties of Picard rank 2.

Theorem 12 (Kleinschmidt). Let XΣ be a smooth projective toric variety with Pic(XΣ) ≃
Z2. Then there exists integers r ≥ 1, t ≥ 2, 0 ≤ a1 ≤ · · · ≤ ar with r+t−1 = d = dim(XΣ)
such that

XΣ ≃ P(OPt−1 ⊕ OPt−1(a1)⊕ · · · ⊕ OPt−1(ar)).

Moreover, if we write Ik = {1, . . . , k} ⊂ Z, then XΣ is isomorphic to the subvariety of
Prt × Pt−1 given in homogeneous coordinates ([x0 : (xij)i∈It,j∈Ir ], [y1 : . . . : yt]) by the
equations

xmjy
aj
n = xnjy

aj
m , for all j ∈ Ir and all m,n ∈ It with m ̸= n. (1.4.1)

1Actually, the classification in [19] does not assume the projectivity hypothesis.
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1.5 Manin’s Conjecture

The purpose of this section is to introduce concepts related to Conjecture 1 such as
heights, height zeta functions, and a more detailed description of Peyre’s constant.

Heights

As we say in the Introduction, for the projective space Pn, for Q-rational points, there is
the naive height given by:

HPn(x) = max{|x0|, |x1|, . . . , |xn|}

where x = [x0 : x1 : . . . : xn] ∈ Pn(Q) with gcd(x0, x1, . . . , xn) = 1. This height
ensures that the set {x ∈ Pn(Q) : HPn(x) ≤ B} of rational points with bounded height is
finite.

For a global field K, the naive height is given by

HPn(x) =
∏

v∈Val(K)

max{|x0|v, |x1|v, . . . , |xn|v}

which is well-defined for all x ∈ Pn(K) by the product formula.

For this height, the following finiteness result due to Northcott holds

Proposition 13 (Nothcott). Given B ∈ R, the set

{x ∈ Pn(K) : HPn(x) ≤ B},

is finite.

Metrization of Line Bundles

In this section, we discuss a theory of height functions based on the notion of an adeli-
cally metrized line bundle, following very close [36]. We recall some notation. Let K be a
number field. As before, we denote the set of places of K by Val(K) and write v|∞ if v is
archimedean and v ∤ ∞ if v is nonarchimedean. For a place v, let Kv be the completion of
K at v, and by ov, when v ∤ ∞, the ring of v-adic integers. Let qv be the cardinality of the
residue field κv of Kv for nonarchimedean valuations. The local absolute value | · |v on Kv

is the multiplier of the Haar measure, i.e., d(axv) = |a|vdxv for some Haar measure dxv on
Kv. We denote by

AK =
∏
v

′
Kv

the adele ring of K.
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Definition 14. Let X be an algebraic variety over K and L a line bundle on X . A v-adic
metric on L is a family (|| · ||x)x∈X(Kv) of v-adic Banach norms on the fibers Lx such that for
all Zariski open subsets X◦ ⊂ X and every section f ∈ H0(X◦, L) the map

X◦(Kv) → R, x 7→ ||f ||x,

is continuous in the v-adic topology on X◦(Kv).

Example 15. Assume that L is generated by global sections. Choose a basis (fj)j∈{0,...,n} of
H0(X,L) over K. If f is a section such that f(x) ̸= 0, then we can define

||f ||x := max
0≤j≤n

(∣∣∣∣fj(x)f(x)

∣∣∣∣
v

)−1

,

otherwise ||0||x := 0. This defines a v-adic metric on L. Of course, this metric depends on
the choice of the basis.

Definition 16. Assume that L is generated by global sections. An adelic metric on L is a
collection of v-adic metrics, for v ∈ Val(K), such that for all but finitely many v ∈ Val(K)
the v-adic metric on L is defined by means of some fixed basis (fj)j∈{0,...,n} of H0(X,L).

We shall write || · ||AK
:= (|| · ||v) for an adelic metric on L and call a pair L = (L, || ·

||AK
) an adelically metrized line bundle. Metrizations extend naturally to tensor products and

duals of metrized line bundles, which allows us to define adelic metrizations on arbitrary line
bundles L on a projective variety X . First, write L as L = L1 ⊗ L−1

2 with very ample L1, L2

that we assume are already adelically metrized. An adelic metrization of L is any metrization
which for all but finitely many v is induced from metrizations on L1 and L2.

Definition 17. Let L = (L, || · ||AK
) be an adelically metrized line bundle on X and f an

K-rational section of L. Let X◦ ⊂ X be the maximal Zariski open subset of X where f is
defined and does not vanish. For all x = (xv)v ∈ X◦(A) we define the local height function

HL ,f,v(xv) := ||f ||−1
xv
,

and the global height function

HL (x) :=
∏

v∈Val(K)

HL ,f,v(xv).

By the product formula, the restriction of the global height to X◦(K) does not depend on
the choice of f .

1.5.1 Height zeta functions

Some analytic approaches to the conjectures of Manin et al. make use of height zeta
functions. In this section we present these functions.
Let X be an algebraic variety over a global field K, L = (L, || · ||AK

) an adelically metrized
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ample line bundle on X , HL a height function associated to L , X◦ a subvariety of X , and
aX◦(L ) the abscissa of convergence of the height zeta function

Z(X◦,L , s) :=
∑

x∈X◦(K)

HL (x)−s.

Proposition 18. The value of aX◦(L ) depends only on the class of L in NS(X).

So, we may write aX◦(L) := aX◦(L ).

1.5.2 Peyre’s constants

In this section, we present in more detail the constants mentioned in Conjecture 1. We we
follow [26]. Let p a nonarchimedean place of a number field K and Kp the local field cor-
responding to |·|p. If p is above the rational prime p, then we can choose |x|p = |NKp/Qp(x)|p.

Let X be a smooth projective algebraic variety over K and (|| · ||v)v∈Val(K) an adelic
metric over ω−1

X . Let H be the corresponding height over X(K), and denote by X the base
change of X over K (an algebraic closure of K). The adelic metrization of the anticanonical
line bundle yields for any place v of K a measure ωH,v on the locally compact space X(Kv),
given by the local formula

ωH,v =

∥∥∥∥ ∂

∂x1,v

∧ · · · ∧ ∂

∂xn,v

∥∥∥∥
v

dx1,v . . . dxn,v,

where x1,v, . . . , xn,v are local v-adic analytic coordinates, ∂
∂x1,v

∧· · ·∧ ∂
∂xn,v

is seen as section
of ω−1

X and the Haar measures dxj,v are normalized as follows:

• If v is a finite place, then
∫

Ov
dxj,v = 1;

• If v is real, dxj,v is the standard Lebesgue measure;

• If v is complex, then dxj,v = −idzdz.

Let S a finite set of bad places containing the archimedean ones. Increasing S if necessary,
we can assume that X lifts to a projective smooth scheme X over OS := {x ∈ OK : v(x) ≥
0 for all v /∈ S}, the ring of S-integers.
For any p ∈ Val(K) \ S let N(p) denote its ideal norm. The local term of the L-function
correspond to the Picard group is defined by

Lp(s,Pic(X)) =
1

det(1−N(p)−sFrobp|Pic(XKp
)⊗Q)

.
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Example 19. If Pic(XQ) = Z, then det(1−N(p)−sFrobp|Pic(XQ)
Ip) = 1− p−s (see [18]),

where Pic(XQ)
Ip is the fixed module under the inertia group Ip.

The corresponding global L-function is given by

LS(s,Pic(X)) =
∏

p∈Val(K)\S

Lp(s,Pic(X)).

It converges for ℜ(s) > 1 and has a meromorphic continuation to C with a pole of order
t = rk Pic(X) at 1.
The local convergence factors are defined as λv = Lv(1,Pic(X)) if v ∈ Val(K) \ S and
Lv = 1 otherwise. In addition, the local density in p ∈ Val(K) \ S is defined as

dp(X) =
#X (Kp)

N(p)dimX
.

Lemma 20. For almost everything v ∈ Val(K) \ S, we have

ωH,v(X(Kv)) = dp(X).

Definition 21. The Tamagawa measure corresponding to H is defined by

ωH = lim
s→1

(s− 1)tLS(s,Pic(X))
√

∆K

− dim(X) ∏
v∈Val(K)

λ−1
v ωH,v.

where ∆K is the discriminant of the field K. The Tamagawa number is defined by

τH(X) =

∫
X(K)

ωH ,

where X(K) is the closure of X(K) in X(AK).

Definition 22. The cohomological constant is given by

β(X) = #H1(K,Pic(X)).

Let NS(X)∨ be the dual lattice of NS(X). It determines the normalization of the Lebesgue
measure dy on NS(X)∨ ⊗ R (with covolume one).

Example 23. If Pic(XQ) ≃ Z then β(X) = 1.

As mentioned in the introduction in Remark 3, if X is a Hirzebruch–Kleinschmidt variety,
we have that β(X) = 1.
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Definition 24. The Peyre’s α-constant of an almost Fano2 variety X is defined as

α(X) =
1

(rkPic(X)− 1)!

∫
Λeff(X)∨

e−⟨−KX ,y⟩dy,

where ⟨·, ·⟩ denotes the natural pairing Pic(X)R×Pic(X)∨R → R and dy denotes the Lebesgue
measure on Pic(X)∨R normalized to give covolume 1 to the lattice Pic(X)∨ (see e.g. [31, Def-
inition 2.5]). Also define the constant (see [29, Proposition 3.1.2]

α∗(X) =

∫
Λeff(X)∨

e−⟨−KX ,y⟩dy.

Example 25. If Pic(X) ≃ Z and [L] is the ample generator such that [−KX ] = δ[L] then
α(X) = 1

δ
.

A straightforward computation using Propositions 30 and 83 give us the following result.

Lemma 26. Let X = Xd(a1, . . . , ar) be a Hirzebruch–Kleinschmidt variety. Then, its α-
constant is given by

α(X) =

∫ ∞

0

∫ ∞

0

e−(r+1)y1−((r+1)ar+t−|a|)y2dy1 dy2 =
∫ ∞

0

∫ ∞

ary2

e−(r+1)y1−(t−|a|)y2dy1 dy2

=
1

(r + 1) ((r + 1)ar + t− |a|)
= α∗(X).

1.6 A Tauberian theorem

As mentioned in the Introduction, the Theorem 70 is obtained from the analytic properties
of certain height zeta functions, by using a Tauberian theorem. We will use the following
formulation, which follows from [12, Théorème III].

Theorem 27. Let X be a countable set, H : X → R+ a function and suppose that

Z(s) =
∑
x∈X

H(x)−s

is absolutely convergent for ℜ(s) > a > 0 and

Z(s) =
g(s)

(s− a)b
,

where b is a positive integer and g(s) is a holomorphic function in the half-plane ℜ(s) > a−ε,
for some ε > 0, with g(a) ̸= 0. Then, for every B > 0 the cardinality

N(X,H,B) = #{x ∈ X : H(x) ≤ B}

is finite, and

N(X,H,B) ∼ g(a)

(b− 1)! a
Ba(logB)b−1 as B → ∞.

2Every smooth projective toric variety is almost Fano.



Chapter 2

Number fields case

2.1 Basic notation

Throughout this chapter we let K denote a number field of degree nK over Q. Associated
to K we have the following objects:

• The ring of integers OK and the associated arithmetic curve S := Spec(OK).

• The number wK of roots of unity in K.

• The discriminant ∆K , regulator RK and class number hK .

• The set of discrete valuations Valf (K), which is in bijection with the set of non-zero
prime ideals p ⊂ OK .

• The set ΣK of field embeddings K ↪→ C, and r1, r2 the number of real and complex
Archimedean places, respectively. In particular, #ΣK = nK = r1 + 2r2.

• Given v ∈ Valf (K) we denote by Kv the corresponding completion, and for x ∈ Kv

we put |x|v := |NrKv |Qp(x)|p where p is the unique prime associated to the restriction
of v to Q, and | · |p denotes the standard p-adic norm (namely, with |p|p = p−1).
Similarly, given σ ∈ ΣK we denote by Kσ the completion of K with respect to the
norm |x|σ := |σ(x)| where | · | stands for the usual Euclidean norm on C (namely,
|x| =

√
xx). With this normalization, the product formula∏

v∈Valf (K)

|x|v
∏

σ∈ΣK

|x|σ = 1

holds for every x ∈ K, x ̸= 0.

• η : Spec(OK) → Spec(Z) is the morphism of schemes induced by the inclusion Z ↪→
OK .
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For a vector a = (a1, . . . , ar) ∈ Nr
0, we write |a| :=

∑r
i=1 ai.

We now recall the definition of Hirzebruch–Kleinschmidt variety mentioned in the Intro-
duction, which in the case of number fields will be normalized in another way.

Definition 28. Given integers r ≥ 1, t ≥ 2 and 0 ≤ a1 ≤ · · · ≤ ar, the Hirzebruch–
Kleinschmidt variety Xd(a1, . . . , ar) is defined as

Xd(a1, . . . , ar) := P(OPt−1 ⊕ OPt−1(−ar)⊕ OPt−1(a1 − ar)⊕ · · · ⊕ OPt−1(ar−1 − ar)),

where d = dim(Xd(a1, . . . , ar)) = r + t − 1. We denote by π : Xd(a1, . . . , ar) → Pt−1 the
associated projective bundle.

Remark 29. Recall that for any line bundle L ∈ Pic(X) and every locally free sheaf E on an
algebraic variety X there is a canonical isomorphism of projective bundles P(E ⊗OX

L ) ≃
P(E ) (see e.g. [11, Lemma 7.0.8(b)]). In particular,

Xd(a1, . . . , ar) ≃ P(OPt−1 ⊕ OPt−1(a1)⊕ · · · ⊕ OPt−1(ar)).

We choose the description in Definition 28 because it allows for a simpler characterization of
the cone of effective divisors (see Proposition 30 below).

Note that the minimal generators of the rays in the fan of Xd(a1, . . . , ar) are the vectors

wi :=

{
u0 − are1 + (a1 − ar)e2 + . . .+ (ar−1 − ar)er if i = 0,
ui if i ∈ {1, . . . , t− 1},

together with the primitive elements e0, . . . , er. From now on we denote by Di the divisor
on Xd(a1, . . . , ar) corresponding to the minimal generator wi, for i ∈ {0, . . . , t − 1}, and
by Ej the corresponding divisor corresponding to ej , for j ∈ {0, . . . , r}. It is easy to see
that OX(Di) ≃ π∗OPt−1(1) for every i ∈ {1, . . . , t−1} and OX(E0) ≃ OX(1) (e.g., by using
local trivializations).

2.2 Effective divisors

The following description of the cone of effective divisors on Xd(a1, . . . , ar) is a natu-
ral extension to higher dimensions of the description for Hirzebruch surfaces (see e.g. [15,
Chapter V, Corollary 2.18]).

Proposition 30. Let X = Xd(a1, . . . , ar) be a Hirzebruch–Kleinschmidt variety and let us
denote by f the class of π∗OPt−1(1) and by h the class of OX(1), both in Pic(X). Then:

1. Pic(X) ≃ Zh⊕ Zf .

2. The anticanonical divisor class of X is given by

−KX = (r + 1)h+ ((r + 1)ar + t− |a|) f,

where |a| =
∑r

i=1 ai.
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3. The cone of effective divisors of X is given by

Λeff(X) = {λh+ µf : λ ≥ 0, µ ≥ 0} ⊂ Pic(X)R

where Pic(X)R := Pic(X)⊗Z R.

Proof. We follow [17, Section 7]. With the above notation we have that the vectors w1, . . . , wt−1,
e1, . . . , er form a basis for Zt−1 ⊕ Zr. For 1 ≤ i ≤ t− 1, 1 ≤ j ≤ r we denote by w∗

i , e
∗
j the

corresponding dual basis elements. We then compute the divisors of the characters χw∗
i for

i ∈ {1, . . . , t− 1}, which are

div
(
χw∗

i
)
=

t−1∑
k=0

⟨w∗
i , wk⟩Dk +

r∑
k=0

⟨w∗
i , ek⟩Ek = −D0 +Di,

and similarly the divisors of the characters χe∗j for j ∈ {1, . . . , r} are

div
(
χe∗j
)
= (aj−1 − ar)D0 − E0 + Ej

(recalling that a0 := 0). Therefore, in Pic(Xd(a1, . . . , ar)) we have the relations

Di = D0 and Ej = E0 + (ar − aj−1)D0 for 1 ≤ i ≤ t− 1, 1 ≤ j ≤ r. (2.2.1)

In particular, Pic(Xd(a1, . . . , ar)) = Z · E0 ⊕ Z ·D0 = Zh⊕ Zf . This proves item (1).

It follows from [11, Theorem 8.2.3] that the anticanonical divisor class of X = Xd(a1, . . . , ar)
is given by the class

t−1∑
i=0

Di +
r∑

j=0

Ej = (r + 1)E0 + ((r + 1)ar + t− |a|)D0.

This proves item (2).

Finally, by [11, Lemma 15.1.8] the effective cone equals the cone generated by the classes
of the divisors Di and Ej . Hence, item (3) is a consequence of (2.2.1). This completes the
proof of the proposition.

It follows from [20, Theorem 2.2.26] that a divisor class in Pic(Xd(a1, . . . , ar)) is big if
and only if it lies in the interior of the effective cone Λeff(X). Hence, we get the following
corollary from Proposition 30.

Corollary 31. Let L = λh+µf with λ, µ ∈ Z, where {h, f} is the basis of Pic(Xd(a1, . . . , ar))
given in Proposition 30. Then, L is big if and only if λ > 0 and µ > 0.

In particular, Proposition 30 implies that the anticanonical divisor class in a Hirzebruch–
Kleinschmidt variety is big. This is true for any smooth projective toric variety.
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2.3 Restriction of big line bundles

Given integers r ≥ 1, t ≥ 2 and 0 ≤ a1 ≤ · · · ≤ ar we defined the Hirzebruch–
Kleinschmidt variety X = Xd(a1, . . . , ar) of dimension d = r + t − 1 as the projective
bundle P(E ) where

E := P(OPt−1 ⊕ OPt−1(−ar)⊕ OPt−1(a1 − ar)⊕ · · · ⊕ OPt−1(ar−1 − ar)).

Definition 32. Put

Y := OPt−1(−ar)⊕ OPt−1(a1 − ar)⊕ · · · ⊕ OPt−1(ar−1 − ar)

and define, as in the Introduction, the projective subbundle F := P(Y ) ⊂ Xd(a1, . . . , ar).

Note that, when r ≥ 2 we have (see Remark 29)

F ≃ P(Y ⊗ OPt−1(ar − ar−1)) = Xd−1(a1, . . . , ar−1), (2.3.1)

hence F is a Hirzebruch–Kleinschmidt variety of dimension d − 1, while in the case r = 1
we have that F ≃ Pt−1 is a projective space.

Denote by ι : F → X the inclusion map. Given a class L ∈ Pic(X), we denote by L|F :=
ι∗L its restriction to F .

In this section we prove the following results concerning the restriction to F of line bun-
dles on X .

Lemma 33. Assume r ≥ 2, let X = Xd(a1, . . . , ar), X ′ = Xd(a1, . . . , ar−1), and let {h, f},
{h′, f ′} be the bases of Pic(X) and Pic(X ′), respectively, given in Proposition 30. If L =
λh+µf ∈ Pic(X), then L|F ∈ Pic(F ) corresponds under the canonical isomorphism (2.3.1)
to the class

λh′ + (µ− λ(ar − ar−1))f
′ ∈ Pic(X ′).

In particular, L|F is a big line bundle class in Pic(F ) if and only if λ > 0 and µ > λ(ar −
ar−1).

Proof. On the one hand, given a closed immersion φ : X ↪→ PN (for some N > 0) we have

h|F = ι∗h = ι∗(OX(1)) = ι∗(φ∗(OPN (1))) = (φ ◦ ι)∗(OPN (1)) = OF (1).

Now, under the isomorphism (2.3.1), the class OF (1) ∈ Pic(F ) corresponds to OX′(1) ⊗
(π′)∗OPt−1(ar−1 − ar), where π′ : X ′ → Pt−1 is the projection map of X ′ (see [15, Chapter
2, Lemma 7.9]). This shows that h|F corresponds to h′ + (ar−1 − ar)f

′. On the other
hand, since (2.3.1) is an isomorphism of projective bundles over Pt−1, we have that f |F =
(π|F )∗(OPt−1(1)) corresponds to (π′)∗(OPt−1(1)) = f ′. This implies that L|F = λh|F +µf |F
corresponds to

λ(h′ + (ar−1 − ar)f
′) + µf ′ = λh′ + (µ− λ(ar − ar−1))f

′.

Finally, the last statement follows from Corollary 31. This proves the lemma.
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Lemma 34. Assume r = 1, i.e. X = Xd(a) with a ≥ 0 an integer. If L = λh + µf ∈
Pic(X), then L|F corresponds under the isomorphism F ≃ Pt−1 to the class of the line
bundle OPt−1(µ− aλ) ∈ Pic(Pt−1). In particular, L|F is big if and only if µ > aλ.

Proof. The proof is similar to the case r ≥ 2, but now we use that h|F = π∗(OPt−1(−a))
corresponds to OPt−1(−a), while f |F corresponds to OPt−1(1). .

Remark 35. When applied to the anticanonical class −KX = (r+1)h+((r+1)ar+ t−|a|)
(see Proposition 30(3)), Lemmas 33 and 34 show that −KX remains big when restricted to
each component in the decomposition (0.0.7) if and only if t > |a|, and this is exactly the
case when Xd(a1, . . . , ar) is Fano according to [19, Theorem 2(2)].

2.4 Hermitian vector bundles over arithmetic curves

In this section we follow closely the presentation in [5]. Let us recall that S = Spec(OK).

Definition 36. A Hermitian vector bundle E over S is a pair (E, h) where E is a finitely
generated projective OK-module and h = {hσ}σ∈ΣK

is a family of positive definite Hermitian
forms over the family of complex vector spaces {E⊗OK ,σC}σ∈ΣK

, which are invariant under
conjugation, i.e., ∥e⊗σ λ∥σ = ∥e⊗σ λ∥σ, for all e ∈ E, λ ∈ C, where ∥ · ∥σ :=

√
hσ(·, ·) is

the usual Hermitian norm associated to hσ. An element of E is called a rational section.

The rank of E = (E, h) is defined as the rank of E as OK-module, i.e., as the dimension
of the complex vector spaces E⊗OK ,σC. A morphism between two Hermitian vector bundles
E1 = (E1, h1) and E2 = (E2, h2) is a OK-homomorphism φ : E1 → E2 such that ∥φ(e ⊗σ

λ)∥2,σ ≤ ∥e⊗σ λ∥1,σ for all e ∈ E, λ ∈ C and σ ∈ ΣK . An isomorphism of Hermitian vector
bundles is a bijective morphism inducing an isometry E1⊗OK ,σC → E2⊗OK ,σC for every σ.

We denote by P̂ic(S) the set of Hermitian line bundles (i.e., Hermitian vector bundles of
rank 1) over S up to isomorphism. Note that a Hermitian line bundle is uniquely determined
by the underlying projective OK-module and the values ∥1∥σ with σ ∈ ΣK .

Example 37. Let r ∈ N≥1. The trivial Hermitian vector bundle O⊕r
K := (O⊕r

K , h) over S is
defined by considering for each σ ∈ ΣK the Hermitian form

hσ(a⊗σ λ1, b⊗σ λ2) := λ1λ2⟨σ(a), σ(b)⟩Cr ,

where for a = (ai) ∈ O⊕r
K we put σ(a) := (σ(ai)) ∈ Cr and ⟨·, ·⟩Cr denotes the standard

bilinear form in Cr.

2.5 Operations with Hermitian vector bundles.

It is possible to extend the usual constructions of linear algebra to Hermitian vector bun-
dles. Here we present the ones that will be needed in this chapter.

Let E1 = (E1, h1) and E2 = (E1, h2) be Hermitian vector bundles over S.
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• Direct sum. We define E1 ⊕ E2 as the pair (E, h) where E := E1 ⊕ E2, and over

(E1 ⊕ E2)⊗OK ,σ C ≃ (E1 ⊗OK ,σ C)⊕ (E2 ⊗OK ,σ C)

we define

hσ(((e1⊗σλ1), (d1⊗σµ1)), ((e2⊗σλ2), (d2⊗σµ2))) := h1,σ(e1⊗σλ1, e2⊗σλ2)+h2,σ(d1⊗σµ1, d2⊗σµ2).

We have rk(E1 ⊕ E2) = rk(E1) + rk(E2).

• Tensor product. Define E1 ⊗E2 as the pair (E, h), where E := E1 ⊗OK
E2, and over

(E1 ⊗OK
E2)⊗OK ,σ C ≃ (E1 ⊗OK ,σ C)⊗C (E2 ⊗OK ,σ C)

we define

hσ((e1⊗σλ1⊗e2⊗σλ2), (d1⊗σµ1⊗d2⊗σµ2)) := h1,σ(e1⊗σλ1, d1⊗σµ1)h2,σ(e2⊗σλ2, d2⊗σµ2).

Then, rk(E1 ⊗ E2) = rk(E1) rk(E2).

• Dual. Given a Hermitian vector space (V, h), we can identify V with its dual V ∨ =
HomC(V,C) by means of the application v 7→ Hv, where Hv is the functional defined
by Hv(u) = h(u, v). With this identification, V ∨ inherits a Hermitian structure given
by hV ∨(Hu, Hv) := h(u, v). We thus define E

∨
1 as the pair (E, h) where E = E∨

1 =
HomOK

(E,OK) and h is the family of Hermitian forms defined in

HomOK
(E,OK)⊗OK ,σ C ≃ HomC(E ⊗OK ,σ C,OK ⊗OK ,σ C)

≃ HomC(E ⊗OK ,σ C,C)
= (E ⊗OK ,σ C)∨

as we explained before for Hermitian vector spaces. In particular, rk(E
∨
1 ) = rk(E1).

• Alternating products. Given m ∈ N≥1, define
∧m E1 as the pair (E, h) where E =∧m E1 and h is the family of Hermitian forms defined by

hσ(e1 ∧ · · · ∧ em, d1 ∧ · · · ∧ dm) := det(h1,σ(ei, dj)).

We have rk
(∧m E1

)
=

(
rk(E1)
m

)
. In particular, the determinant det

(
E1

)
:=∧rk(E1) E1 is a Hermitian line bundle.

• Direct image. Recall that η : Spec(OK) → Spec(Z) is the morphism induced by the
inclusion Z ↪→ OK . Given a Hermitian vector bundle E1 = (E1, h1) over S, we can
define a Hermitian vector bundle η∗E = (E, h) over Spec(Z) in the following way:
Consider E = E1 but as a free Z-module of rank [K : Q] · rkE, and note that

E ⊗Z C = E1 ⊗Z C ≃ E1 ⊗OK
(OK ⊗Z C) ≃

⊕
σ

(E1 ⊗OK ,σ C).

Then, given a = (aσ), b = (bσ) ∈
⊕

σ(E1⊗OK ,σC), we define h(a, b) :=
∑

σ h1,σ(aσ, bσ).
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Remark 38. The set P̂ic(S) has a group structure induced by the tensor product. The inverse
element is induced by the dual and the identity element is the class of the trivial Hermitian
line bundle OK defined in Example 37.

Example 39. For an integer n ≥ 1 consider the trivial Hermitian vector bundle O⊕n+1
K (see

Example 37) and the projective space of lines Pn(K) = P(K⊕n+1). Each line ℓ ⊂ K⊕n+1

defines a finitely generated projective OK-module O⊕n+1
K ∩ ℓ whose corresponding complex-

ifications are metrized using the restriction of the ambient Hermitian forms. Then, for each
point P = ℓ ∈ Pn(K) we get a Hermitian line bundle denoted by OPn(−1)P . Its dual is
denoted by OPn(1)P . The metric on OPn(1)P ⊗OK,σ

C constructed in this way is the Fubini–
Study metric (see e.g. [21, Example 1.2.45]). As usual, by taking duals and tensor powers,
we can define for every a ∈ Z the Hermitian line bundle OPn(a)P .

Remark 40. Note the analogy between the construction in the example above and the classical
construction of the tautological line bundle of Pn. In particular, we can interpret OPn(−1)P
as OPn(−1)P ∩ O⊕n+1

K where OPn(−1) is the tautological geometric line bundle over the
projective space Pn.

2.6 Arakelov degree

In this section, we will review some of the important properties of the Arakelov degree of
Hermitian vector bundles.

Definition 41. Let L = (L, h) be a Hermitian line bundle over S and s ∈ L\{0} a non-trivial
rational section. The Arakelov degree of the line bundle L is defined as

d̂eg(L) : = log |L/OKs| −
∑
σ∈ΣK

log ∥s∥σ

=
∑
p⊂OK

vp(s) logN(p)−
∑
σ∈ΣK

log ∥s∥σ,

where p runs over all non-zero prime ideals of OK , N(p) = |OK/p| is the norm of the
ideal p and vp(s) denotes the p-adic valuation of s seen as a section of the invertible sheaf
over S associated to L. More concretely, if we consider the localization Lp := L ⊗OK

OK,p,
then Lp is a free OK,p-module of rank one and therefore there exists an isomorphism (a
trivialization) ip : Lp

∼−→ OK,p. Then, vp(s) = vp(ip(s⊗ 1)) via this identification. It follows
from the product formula that the definition above is independent of the choice of the non-
trivial section s.

The Arakelov degree of a Hermitian vector bundle E = (E, h) over S is defined as

d̂eg(E) := d̂eg(det(E)),

and its norm is defined as N(E) := ed̂eg(E) ∈ R>0.
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Example 42. For the trivial Hermitian vector bundle O⊕r
K = (O⊕r

K , h), we have d̂eg(O⊕r
K ) =

0. Indeed, by definition det(O⊕r
K ) = OK . Thus, choosing s = 1 we see immediately that d̂eg(OK) =

0.

Example 43. Let OPn(1)P defined as in Example 39, and let P = [x0 : . . . : xn] ∈ Pn(K).
Then, it follows from [23, Proposition 9.10] that

d̂eg(OPn(1)P ) =
∑
p⊂OK

logmax
i

{|xi|p}+
∑
σ∈ΣK

log

√∑
i

|xi|2σ.

The following example can be found in [5, Section 1.2.2].

Example 44. Consider the canonical module defined as

ωOK
:= HomZ(OK ,Z),

which is a projective OK-module by defining a · f via (a · f)(b) := f(ab) for a, b ∈ OK ,
f ∈ ωOK

. The Hermitian bundle ωOK
= (ωOK

, h) is defined by imposing ∥ trK/Q ∥σ = 1 for
all σ ∈ ΣK , where trK/Q : K → Q is the usual trace map. We call this Hermitian bundle
over S the canonical Hermitian bundle. It has Arakelov degree d̂eg(ωOK

) = log |∆K |.

We refer the reader to [5, Section 1.3.1] for the following properties of the Arakelov
degree.

Proposition 45. Let E,F be Hermitian vector bundles over S. Then:

1. d̂eg(E ⊗ F ) = rkF · d̂eg(E) + rkE · d̂eg(F ).

2. d̂eg(E ⊕ F ) = d̂eg(E) + d̂eg(F ).

3. d̂eg(E
∨
) = −d̂eg(E).

2.7 Arakelov divisors over Spec(OK)

In this section we recall the language of Arakelov divisors and their relationship with
Hermitian line bundles.

Definition 46. An Arakelov divisor over S is a formal finite sum

D =
∑
p⊂OK

xpp+
∑
σ∈ΣK

xσσ, (2.7.1)

with xp ∈ Z, and xσ ∈ R satisfying xσ = xσ for all σ ∈ ΣK .
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Following [24, Chapter I, §5] we define

K+
R :=

{
(xσ) ∈

∏
σ∈ΣK

R : xσ = xσ

}
.

We then have an isomorphism of groups

Div(K) ≃
( ⊕

p⊂OK

Z
)
×K+

R ,
∑
p⊂OK

xpp+
∑
σ∈ΣK

xσσ 7→
(
(xp)p⊂OK

, (xσ)σ∈ΣK

)
.

On K+
R we consider the canonical inner product

⟨(xσ), (yσ)⟩K+
R
:=

∑
σ∈ΣK

nσxσyσ,

where nσ = 1 or 2 depending on whether σ is real or complex. This induces a canonical
measure on K+

R giving volume 1 to any cube generated by an orthonormal basis.

We endow Div(K) with the product topology of the discrete topology on Z and the Eu-
clidean topology on K+

R , and with the product measure of the counting measure on Z and the
canonical measure on K+

R .

Remark 47. In [13] Arakelov divisors are defined as formal sums as in (2.7.1), but with σ
running over the Archimedean places of K. If we denote by vσ = vσ the Archimedean place
associated to a pair of conjugated complex embeddings σ, σ ∈ ΣK , then the map xσσ +
xσσ 7→ 2xvσ induces an equivalence between the two notions of Arakelov divisor, which
is compatible with the constructions presented in this section. In particular, the canonical
measure on K+

R ≃ Rr1+r2 corresponds to the usual Lebesgue measure on Rr1+r2 .

Definition 48. The degree of the Arakelov divisor D is the real number

deg(D) :=
∑
p⊂OK

log(N(p))xp +
∑
σ∈ΣK

xσ,

and we define the norm of D as N(D) := edeg(D).

Notation 49. Given f ∈ K×, its associated principal Arakelov divisor is defined as

div(f) :=
∑
p⊂OK

xpp+
∑
σ∈ΣK

xσσ,

with xp = ordp(f) and xσ = − log |σ(f)|. The quotient group of Div(K) by its subgroup of
principal Arakelov divisors is denoted by Pic(K) and is called the Picard–Arakelov group.

To each Arakelov divisor D =
∑

p xpp+
∑

σ xσσ, we can associated a fractional ideal of
K by means of D 7→ ID =

∏
p p

−xp . Then, we have a surjective homomorphism

Div(K) → J(K),

where J(K) is the group of fractional ideals of K. In particular, if the Archimedean part
of D is zero, then N(D) = N(ID)

−1. Moreover, we have the following result (see e.g. [24,
Chapter III, Proposition 1.11 and Theorem 1.12]).
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Lemma 50. If we denote by Pic0(K) the subgroup of degree zero Arakelov divisor classes
in Pic(K) and by Cl(K) the ideal class group of the number field K, then we have an exact
sequence

0 → H/Γ → Pic0(K) → Cl(K) → 0,

where H := {(xσ) ∈ K+
R :

∑
σ xσ = 0} and Γ := Log(O×

K) where Log(a) = (log |σ(a)|)
for a ∈ K×. In particular, Pic0(K) is compact.

We endow Pic(X) with the quotient measure of the product measure on Div(X). On Div0(X)
we consider the unique measure satisfying∫

Div(X)

f(D) dD =

∫
R

∫
Div0(X)

f (D0 + xU) dD0 dx (2.7.2)

for all f ∈ L1(Div(X)), where U is the divisor1

U :=
1√

r1 + r2

∑
σ∈ΣK

1

nσ

σ,

and endow Pic0(K) with the corresponding quotient measure. The above lemma implies that
the volume of Pic0(K) equals

vol(Pic0(K)) = hK vol(H/Γ) = hKRK

√
r1 + r2, (2.7.3)

where RK and hK are the regulator and the class number of K, respectively (see [24, Chap-
ter III, Proposition 7.5]).

In Sections 2.9 and 2.10 we will make use of the following formula.

Lemma 51. Given a positive function f ∈ L1(R), we have∫
Pic(K)

f(deg(D)) dD = hKRK

∫
R
f(x) dx.

Proof. Property (2.7.2) implies∫
Pic(K)

f(deg(D)) dD =

∫
R

∫
Pic0(K)

f(x deg(U)) dD dx =
vol(Pic0(K))

deg(U)

∫
R
f(x) dx.

Then, the result follows from (2.7.3) together with deg(U) =
√
r1 + r2. This proves the

lemma.

It is worth mentioning that given a Hermitian line bundle L = (L, h) over S, we can
associate to it an Arakelov divisor in the following way: Let s ∈ L be a non-trivial rational
section and define

div(s) :=
∑
p⊂OK

vp(s)p+
∑
σ∈ΣK

(− log |s|σ)σ.

1U corresponds to a vector in K+
R that is orthogonal to H and has norm 1 with respect to the canonical inner

product.
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The class DL of div(s) in Pic(K) is independent of the choice of the section s. Moreover,
the degree d̂eg(L) of the Hermitian line bundle L over S is equal to the degree deg(DL) of
the Arakelov divisor class DL.

Conversely, following [5, p. 32], given an Arakelov divisor D =
∑

p xpp +
∑

σ xσσ, we
can construct a Hermitian line bundle O(D) = (OK(D), h = {hσ}) by defining OK(D) :=
ID =

∏
p p

−xp , and for each embedding σ ∈ ΣK imposing that ∥1∥σ = e−xσ .

Notation 52. For an Arakelov divisor D and a rational section f ∈ ID we write

∥f∥D = ∥f∥O(D) =

√∑
σ∈ΣK

∥f∥2σ =

√∑
σ∈ΣK

|σ(f)|2e−2xσ .

Note that given Hermitian line bundles L1 = (L1, h1), L2 = (L2, h2) with trivializations
ip : L1,p → OK,p and jp : L2,p → OK,p, the corresponding trivializations for L1 ⊗ L2,
kp : (L1⊗OK

L2)p → OK,p are given by kp(s⊗t) = ip(s)jp(t). Thus, vp(s⊗t) = vp(s)+vp(t).
This shows that the map P̂ic(S) → Pic(K) given by L 7→ DL is a group homomorphism.

From the above discussion, we conclude the following.

Proposition 53. The map P̂ic(S) → Pic(K), L 7→ DL is a group isomorphism.

By abuse of notation, we will employ this isomorphism to treat Arakelov divisor classes
as Hermitian line bundles (and vice versa) when the context does not lead to confusion. For
example, for an Arakelov divisor class D ∈ Pic(K) and L ∈ P̂ic(S), we write D⊗L to refer
to the element O(D)⊗ L ∈ P̂ic(S).

2.8 The Poisson–Riemann–Roch formula

Definition 54. Let E = (E, h) be a Hermitian vector bundle over SpecZ, and define

h0(E) := log
∑
v∈E

e−π∥v∥2
E ,

where ∥ · ∥E denotes the norm on E ⊗Z C associated to h. More generally, for a Hermitian
vector bundle E = (E, h) over S we put

h0(E) := h0(η∗E).

We also define the number of non-trivial sections of E by

φ(E) := eh
0(E) − 1.

It is worth mentioning that the previous definition coincides with the one given in [13,
Section 3] for Arakelov divisors. More precisely, the authors consider an Arakelov divisor
D =

∑
p⊂OK

xpp+
∑

σ xσσ, and define h0(D) = log k0(D) where

k0(D) :=
∑
f∈ID

e−π∥f∥2D .
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Then, a simple computation shows that h0(O(D)) = h0(D).

Lemma 55. For E and F Hermitian vector bundles over S, we have that

1. h0(E ⊕ F ) = h0(E) + h0(F ), and

2. φ(E ⊕ F ) = φ(E) + φ(F ) + φ(E)φ(F ).

Proof. Since η∗(E⊕F ) = η∗(E)⊕η∗(F ), it is enough to prove item (1) for Hermitian vector
bundles over Spec(Z). In that case, we have∑

(x,y)∈E⊕F

e
−π∥(x,y)∥2

E⊕F =
∑

(x,y)∈E⊕F

e−π(∥x∥2
E
+∥y∥2

F
)

=

(∑
x∈E

e−π∥x∥2
E

)(∑
y∈F

e−π∥y∥2
F

)
.

Taking logarithms we conclude (1). Item (2) is a direct consequence of (1). This proves the
lemma.

The following formula follows from Lemma 55(2) by induction.

Corollary 56. Let σ1, . . . , σn be the elementary symmetric polynomials in n variables and
let E1, . . . , En be Hermitian vector bundles over S. Then

φ(E1 ⊕ . . .⊕ En) =
n∑

i=1

σi(φ(E1), . . . , φ(En)).

We can now state the Poisson–Riemann–Roch formula for Hermitian vector bundles over
the arithmetic curve S. See [5, Section 2.2.2] for details.

Theorem 57. Let E be a Hermitian vector bundle over S. Then

h0(E)− h0(ωOK
⊗ E

∨
) = d̂eg(E)− 1

2
(log |∆K |) · rk(E).

Equivalently, we have φ(E) =
(
φ(E

∨ ⊗ ωOK
) + 1

)
N(E)|∆K |−

rk(E)
2 − 1.

In [13, Section 5, Corollary 1] the authors prove the following bound for the number of
non-trivial sections of Arakelov divisors with bounded degree.

Proposition 58. Let C ∈ R and let D be an Arakelov divisor over S with deg(D) ≤ C. Then

φ(D) := φ(O(D)) ≤ βe−πnKe
− 2

nK
deg(D)

,

for some β > 0 depending on C and K, where nK = [K : Q].
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Remark 59. In the proof of [13, Section 5, Corollary 1], the authors assumed that deg(D) ≤
1
2
log(|∆K |). Their proof can be adapted to Arakelov divisors with deg(D) ≤ C by consid-

ering

u =
1

nK

(C − deg(D)) and D′ = D +
∑
σ

uσ,

instead of the u and D′ used in their proof of [13, Proposition 2].

In order to deal with Hirzebruch–Kleinschmidt varieties, we will need the following
bound.

Proposition 60. Let E be a split Hermitian vector bundle over S, i.e., E = L1 ⊕ · · · ⊕ Lr

where each Li is a Hermitian line bundle, and let L ∈ P̂ic(S) such that d̂eg(L) ≤ C for
some C ∈ R. Then, there exist β, γ > 0 depending on C,K and E, such that

φ(E ⊗ L) ≤ βe−γe
− 2

nK
d̂eg(L)

where nK = [K : Q].

Proof. We have
φ(E ⊗ L) = φ((L1 ⊕ · · · ⊕ Lr)⊗ L).

As φ((L1⊕· · ·⊕Lr)⊗L) depends polynomially on φ(Li⊗L) by Corollary 56, it is enough
to prove the bound in the particular case E = Li. Since d̂eg(Li ⊗L) = d̂eg(Li) + d̂eg(L) ≤
C + d̂eg(Li), it follows from Proposition 58 that there exists βi > 0, depending on C, K
and Li, such that

φ(Li ⊗ L) ≤ βie
−πnKe

− 2
nK

d̂eg(Li⊗L)

= βe−γie
− 2

nK
d̂eg(L)

were γi := πnKe
− 2

nK
d̂eg(Li). This proves the desired result.

In the particular case when L is a Hermitian line bundle, the following uniform bound
can be obtained (see [5, Proposition 2.7.3]).

Proposition 61. Let θ ∈ R≥0 and L be a Hermitian line bundle over S such that d̂eg(L) ≤ θ.
Then h0(L) ≤ 1 + θ. In particular, φ(L) ≤ e1+θ.

2.9 Height zeta function of the projective space

In this section, we introduce a zeta function of the field K defined in [13]. This zeta func-
tion will allow us to study the analytic properties of the height zeta function of the projective
space via a suitable integral representation.

We first define the effectivity e(D) of an Arakelov divisor D =
∑

p xpp +
∑

σ xσσ in
Div(K) as

e(D) :=

{
e−π∥1∥2D = e−π

∑
σ e−2xσ if xp ≥ 0 for all p ⊂ OK ,

0 otherwise.
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In [13, Section 4], the authors define the zeta function associated to K as

ξK(s) :=

∫
Div(K)

N(D)−se(D) dD, s ∈ C,ℜ(s) > 1,

and they prove that2 ξK(s) = 2−r1
(
π−s/2Γ(s/2)

)r1
((2π)−sΓ(s))

r2 ζK(s), where

ζK(s) :=
∑

{0}≠J⊆OK

N(J)−s

is the Dedekind zeta function of the field K. In particular, ξK(s) has meromorphic continua-
tion to s ∈ C. Moreover, the authors show that

ξK(s) =
1

wK

∫
Pic(K)

N(D)−sφ(D) dD. (2.9.1)

Let n ≥ 1 be an integer. Given P = [x0 : . . . : xn] ∈ Pn(K), we define the standard
height of P as

HPn(P ) :=
∏

p⊂OK

max
i

{|xi|p} ·
∏

σ∈ΣK

√∑
i

|xi|2σ.

It follows from Example 43 that

HPn(P ) = N(OPn(1)P ) for every P ∈ Pn(K).

The associated height zeta function is

ZPn(s) :=
∑

P∈Pn(K)

HPn(P )−s =
∑

P∈Pn(K)

N(OPn(1)P )
−s,

defined for s ∈ C with ℜ(s) > n + 1 (the series converges absolutely and uniformly on
compact subsets of this domain). We will study this function by means of Arakelov geometry.

As in [22, Section 3.2], we will work with a K-vector space V of dimension n + 1 that
contains a complete OK-lattice E which is the underlying finitely generated projective OK-
module of a Hermitian vector bundle E = (E, h). Analogous to the construction carried out
in Example 39, given a point P ∈ P(V ), we define its height by

HP(V )(P ) := N(OP(V )(1)P ).

We also denote by ZP(V )(s) the corresponding height zeta function. In particular, considering
V = K⊕(n+1) we have HP(K⊕(n+1))(P ) = HPn(P ).

2There is a misprint in the first power of 2 appearing in the third line of the computation leading to the
formula for ξK(s) in [13, p. 388]. In the computation of the integral over tσ for σ real, the factor 2 should
appear in the denominator.
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Recall that if D ∈ Pic(K), we denote the Hermitian line bundle O(D) simply by D.
As explained before, the key idea is to express the height zeta function ZPn(s) as a suitable
integral. To do so, we note that (2.9.1) implies that

wKξK(s)HP(V )(P )−s =

∫
Pic(K)

N(D)−sφ(D)HP(V )(P )−s dD

=

∫
Pic(K)

(N(D)N(OP(V )(1)P ))
−sφ(D) dD

=

∫
Pic(K)

N(D ⊗ OP(V )(1)P )
−sφ(D) dD

=

∫
Pic(K)

N(D)−sφ(D ⊗ OP(V )(−1)P ) dD.

If we fix D ∈ Pic(K) and we let P run through P(V ), then D⊗OP(V )(−1)P runs through
all subline bundles of O(D)⊗ E. Therefore, the above formula implies that

wKξK(s) ZP(V )(s) =

∫
Pic(K)

N(D)−s
∑

P∈P(V )

φ(D ⊗ OP(V )(−1)P ) dD

=

∫
Pic(K)

N(D)−sφ(D ⊗ E) dD.

(2.9.2)

Notation 62. We denote by

Pic(K)− :=
{
D ∈ Pic(K) : N(D) ≤

√
|∆K |

}
the set of Arakelov divisor classes with norm bounded above by

√
|∆K |.

Proposition 63. Let V be a K-vector space of dimension n + 1 containing a complete OK-
lattice E which is the underlying finitely generated projective OK-module of a Hermitian
vector bundle E = (E, h). Then:

1. The integral ∫
Pic(K)−

N(D)−sφ(D ⊗ E) dD

converges absolutely and uniformly for s in compact subsets of C.

2. For ℜ(s) > n+ 1 we have

wKξK(s) ZP(V )(s) =

∫
Pic(K)−

N(D)−sφ(D ⊗ E) dD

+N(E)|∆K |
(n+1)

2
−s

∫
Pic(K)−

N(D)s−(n+1)φ(D ⊗ E
∨
) dD

+RKhK |∆K |−
s
2

(
N(E)

s− (n+ 1)
− 1

s

)
.
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Proof. Item (1) follows from Proposition 60. Indeed, since Arakelov divisor classes D ∈
Pic(K)− satisfy d̂eg(D) ≤ 1

2
log(|∆K |), there are constants β, γ > 0 depending on K and E

such that∫
Pic(K)−

∣∣N(D)−s
∣∣φ(D ⊗ E) dD ≤

∫
Pic(K)−

∣∣N(D)−s
∣∣ βe−γe

− 2
nK

d̂eg(D)

dD.

Using Lemma 51 we get∫
Pic(K)−

∣∣N(D)−s
∣∣φ(D ⊗ E) dD ≤ RKhKβ

∫ 1
2
log(|∆K |)

−∞
e−ℜ(s)x−γe

− 2
nK

x

dx,

and this last integral converges uniformly for s in compact subsets of C. This proves item (1).

Now, if we define Pic(K)+ := {D ∈ Pic(K) : N(D) ≥
√

|∆K |}, then by (2.9.2) we
have

wKξK(s) ZP(V )(s) =

∫
Pic(K)−

N(D)−sφ(D ⊗ E) dD +

∫
Pic(K)+

N(D)−sφ(D ⊗ E) dD.

In order to compute the integral over Pic(K)+, we consider the change of variables D 7→
ωOK

⊗D∨ to get∫
Pic(K)+

N(D)−sφ(D ⊗ E) dD =

∫
Pic(K)−

N(ωOK
⊗D∨)−sφ(ωOK

⊗D∨ ⊗ E) dD

=

∫
Pic(K)−

|∆K |−s N(D)sφ(ωOK
⊗D∨ ⊗ E) dD.

By Theorem 57 we have

φ(D∨ ⊗ ωOK
⊗ E) = eh

0(ωOK
⊗(D⊗E

∨
)∨) − 1

= eh
0(D⊗E

∨
)−deg(D⊗E

∨
)+log |∆K |· rk(D⊗E

∨
)

2 − 1

=
(
φ(D ⊗ E

∨
) + 1

)
N(D)−(n+1) N(E)|∆K |

n+1
2 − 1.

Therefore,∫
Pic(K)+

N(D)−sφ(D ⊗ E) dD

=

∫
Pic(K)−

N(D)s|∆K |−s
((

φ(D ⊗ E
∨
) + 1

)
N(D)−(n+1) N(E)|∆K |

n+1
2 − 1

)
dD

= N(E)|∆K |
n+1
2

−s

∫
Pic(K)−

N(D)s−(n+1)φ(D ⊗ E
∨
) dD

+N(E)|∆K |
n+1
2

−s

∫
Pic(K)−

N(D)s−(n+1) dD

− |∆K |−s

∫
Pic(K)−

N(D)s dD.
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Now, for ℜ(s) > n+ 1 we have (using Lemma 51)∫
Pic(K)−

N(D)s−(n+1) dD =

∫
Pic(K)−

e(s−(n+1)) deg(D) dD

= RKhK

∫ 1
2
log(|∆K |)

−∞
e(s−(n+1))xdx

= RKhK
|∆K |

s−(n+1)
2

s− (n+ 1)
.

Analogously, for ℜ(s) > 0, we have∫
Pic(K)−

N(D)s dD = RKhK
|∆K |

s
2

s
.

This proves item (2) and completes the proof of the proposition.

Remark 64. Proposition 63 also holds in the case n = 0, V = K and E = OK , in which
case ZP(V ) = 1. In particular:

wKξK(s) =

∫
Pic(K)−

N(D)−sφ(D) dD + |∆K |
1−s
2

∫
Pic(K)−

N(D)s−1φ(D) dD

+RKhK |∆K |−
s
2

(
1

s− 1
− 1

s

)
,

(2.9.3)

and this gives the meromorphic continuation of ξK(s) to C (as in [13, Section 4]).

As consequence of Proposition 63 we have the following result (see [22, Theorem 3.2]).

Theorem 65 (Maruyama). Let V be a K-vector space of dimension n + 1 containing a
complete OK-lattice E which is the underlying finitely generated projective OK-module of a
Hermitian vector bundle E = (E, h). Then, the function ZP(V )(s) has meromorphic continu-
ation to the whole complex plane, which is holomorphic for ℜ(s) > 1, s ̸= n+ 1, and with a
simple pole at s = n+ 1. Moreover, we have

Ress=n+1 ZP(V )(s) =
RKhK N(E)

wK |∆K |
n+1
2 ξK(n+ 1)

.

Choosing V = K⊕(n+1) and E = O⊕(n+1)
K , in which case N(E) = 1, we obtain the

following corollary as an application of Theorem 27.

Corollary 66 (Schanuel’s estimate). Let N(Pn, B) := #{P ∈ Pn(K) : HPn(P ) ≤ B}.
Then

N(Pn, B) ∼ CBn+1 as B → ∞,

with
C :=

RKhK

(n+ 1)wK |∆K |
n+1
2 ξK(n+ 1)

.
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Remark 67. Note that the asymptotic constant given above is in general different from to the
one obtained by Schanuel in [34]. This is due to the fact that Schanuel uses an ℓ∞ norm
on the non-Archimedean places, while we use an ℓ2 norm. Also, compare this result with
the one obtained by Guignard in [14, Cor. 3.4.2], taking into account that Guignard defines
N(E) = e−d̂eg(E).

2.10 Counting rational points on Hirzebruch–Kleinschmidt
varieties

In this section, we construct an Arakelov height function HL associated to a big line
bundle class L ∈ Pic(Xd(a1, . . . , ar)), and describe the asymptotic growth of the num-
ber N(U,HL, B) := #{P ∈ U(K) : HL(P ) ≤ B}, where U = Ud(a1, . . . , ar) is the
good open subset of Xd(a1, . . . , ar), as defined in the Introduction. The main results are
Theorems 70 and 76, which are used in Section 2.10.2 to prove Theorem 2. Finally, in Sec-
tion 2.10.3, we briefly discuss subvarieties that accumulate more rational points than others
and provide criteria to determine when this occurs.

2.10.1 Heights induced by big line bundles

Let X = Xd(a1, . . . , ar) be a Hirzebruch–Kleinschmidt variety of dimension d = r+t−1
defined over the number field K (see Definition 28). Recall that

π : X = P(OPt−1 ⊕ OPt−1(−ar)⊕ OPt−1(a1 − ar)⊕ · · · ⊕ OPt−1(ar−1 − ar)) → Pt−1

is a projective vector bundle over Pt−1.

Let us define

W := OPt−1 ⊕ OPt−1(ar)⊕ · · · ⊕ OPt−1(ar − ar−1), (2.10.1)

and recall that for P ∈ X(K) the fiber

OX(−1)P = ℓ ⊆ (OPt−1 ⊕ OPt−1(−ar)⊕ OPt−1(a1 − ar)⊕ · · · ⊕ OPt−1(ar−1 − ar))
∨
π(P ) ,

is given by the one-dimensional subspace ℓ of the (r + 1)-dimensional vector space

(OPt−1 ⊕ OPt−1(−ar)⊕ · · · ⊕ OPt−1(ar−1 − ar))
∨
π(P ) = Wπ(P ),

corresponding to the point P in π−1(π(P )) = P(Wπ(P )). The vector space Wπ(P ) contains
the Hermitian vector bundle

(OPt−1)π(P ) ⊕ OPt−1(ar)π(P ) ⊕ · · · ⊕ OPt−1(ar − ar−1)π(P ),

which we denote by Wπ(P ) for simplicity. By endowing ℓ ∩ Wπ(P ) with the restriction of
the Hermitian forms on Wπ(P ), we obtain the Hermitian line bundle OX(−1)P . As usual, by
taking duals and tensor powers we define OX(a)P for any a ∈ Z.
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Given L = λh+ µf ∈ Pic(X) big and P ∈ X(K), we put

LP := OX(λ)P ⊗ OPt−1(µ)π(P ).

This induces an adelic metric on L as defined in [27, Définition 1.4]. We refer to this as the
standard metric on L.

We can now define the standard height function HL over X(K) associated to L as

HL(P ) := N(LP ).

More explicitly, we have

HL(P ) = eλd̂eg(OX(1)P )eµd̂eg(OPt−1 (1)π(P )) = HP(Wπ(P ))(P )λHPt−1 (π(P ))µ . (2.10.2)

Associated to L = λh+ µf as above, we define

λL :=
r + 1

λ
, µL :=

(r + 1)ar + t− |a|
µ

. (2.10.3)

Then, it easily follows from Proposition 30 that

a(L) = max{λL, µL} and b(L) =

{
2 if λL = µL,
1 if λL ̸= µL.

(2.10.4)

As in the Introduction, we restrict our attention to rational points in a specific open sub-
set U ⊆ X . This is done in order to ensure that N(U,HL, B) is finite for all B > 0, and to
avoid possible proper subvarieties with too many rational points.

Recall that in Section 2.3 we defined the projective subbundle F = P(Y ) ⊂ Xd(a1, . . . , ar)
where

Y = OPt−1(−ar)⊕ OPt−1(a1 − ar)⊕ · · · ⊕ OPt−1(ar−1 − ar).

The following definition was given in the Introduction.

Definition 68. Given integers r ≥ 1, t ≥ 2 and 0 ≤ a1 ≤ · · · ≤ ar, we define the good open
subset of X = Xd(a1, . . . , ad) as

Ud(a1, . . . , ar) := Xd(a1, . . . , ar) \ F.

Remark 69. Given a big line bundle class L ∈ Pic(X), it is know that there exists a dense
open subset UL ⊆ X such that N(UL, HL, B) is finite for every B > 0 (see e.g. [30, Propo-
sition 2.12]). Our good open subset U serves as such a dense open UL for every big L.

The first main result of this section is the following theorem, where we assume ar > 0.
The easier case when ar = 0 is presented later in this section (see Theorem 76). Recall that,
for m ≥ 1, we defined ZPm(s) as the height zeta function of the projective space Pm with
respect to the standard height function (see Section 2.9). Here, we extend this definition by
putting ZPm(s) := 1 (resp. 0) if m = 0 (resp. m = −1).
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Theorem 70. Let X = Xd(a1, . . . , ar) be a Hirzebruch–Kleinschmidt variety over the num-
ber field K of dimension d = r+ t− 1, and let L = λh+ µf ∈ Pic(X) big. Assume ar > 0.
Then, we have

N(U,HL, B) ∼ CL,KB
a(L) log(B)b(L) as B → ∞,

with CL,K given by

R2
Kh2

K |∆K |−
(d+2)

2

w2
K(r+1)µξK(r+1)ξK(t)

if λL = µL,

RKhK |∆K |−
r+1
2

wK(r+1)ξ(r+1)
ZPt−1 (µλL + |a| − (r + 1)ar) if λL > µL,

RKhK |∆K |−
t−NX+(r+1)

2 ξK(λµL+NX−(r+1))
wK((r+1)ar+t−|a|)ξK(λµL)ξK(t)

×
(
ZPNX−1(λµL +NX − (r + 1))− ZPNX−2(λµL +NX − (r + 1))

) if λL < µL,

where NX := #{i ∈ {1, . . . , r} : ai = ar}.

In the proof of Theorem 70 below, we study the analytic properties of the height zeta
function

ZU,L(s) :=
∑

P∈U(K)

HL(P )−s

associated to the big line bundle class L and the good open subset U := Ud(a1, . . . , ar), and
we make use of the following three lemmas.

Lemma 71. For an integer m ≥ 0, define

φm(D) :=

{
φ(D) if m = 0,
φ(D)φ(D⊕m) if m ≥ 1.

(2.10.5)

Then, the following properties hold:

1. For D ∈ Pic(K)− we have φ(D⊕m) = O(1), with an implicit constant depending only
on m and on the base field K.

2. The integral ∫
Pic(K)−

N(D)−sφm(D) dD

converges absolutely and uniformly for s in compact subsets of C.

Proof. Item (1) follows from Proposition 60 since φ(D⊕n) = φ(D ⊗ O⊕n
K ) is bounded

above, for D ∈ Pic(K)−, by a constant depending only on K and n, hence we can use this
fact for n = 1 and n = m. Item (2) follows directly from Proposition 63(1) and the fact
that φ(D⊕m) is bounded. This proves the lemma.
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Lemma 72. Given positive integers 0 < b1 ≤ b2 ≤ · · · ≤ bn and Q ∈ Pt−1, define

EQ := OPt−1(b1)Q ⊕ · · · ⊕ (OPt−1(bn))Q,

and |b| :=
∑n

i=1 bi. Then, for every integer m ≥ 0, every compact subset K ⊂ C and
every s ∈ K , we have∫

Pic(K)−

N(D)−sφm(D)φ
(
D ⊗ EQ

)
dD

= |∆K |−
n
2HPt−1(Q)|b|

∫
Pic(K)−

N(D)n−sφm(D) dD +O(HPt−1(Q)|b|−b1),

with an implicit constant depending only on m,K , b1, . . . , bn and on the base field K,
where φm(D) is defined in (2.10.5).

Proof. Let us define

IQ := {D ∈ Pic(K)− : N(D)HPt−1(Q)b1 ≤
√

|∆K |},
IIQ := {D ∈ Pic(K)− :

√
|∆K | ≤ N(D)HPt−1(Q)b1},

and for i ∈ {1, . . . , n} put E(i)
Q := OPt−1(bi)Q. Fix a compact subset K ⊂ C and as-

sume s ∈ K . In what follows, all terms of the form O(. . .) are meant to have implicit
constants depending only on m,K , b1, . . . , bn and the base field K.

First, from Lemma 71(1) with m = 1 it follows that there exists a constant C1 ≥ 1,
depending only on the base field K, such that φ(D) ≤ C1 for all D ∈ Pic(K)−. Equivalently,

φ
(
D ⊗ E

(1)
Q

)
≤ C1 for all D ∈ IQ. Also, by Proposition 61 we have

φ
(
D ⊗ E

(i)
Q

)
≤ e1+

1
2
log(|∆K |)+bi log(HPt−1 (Q)) = e|∆K |

1
2HPt−1(Q)bi ,

for all D ∈ Pic(K)− and i ∈ {2, . . . , n}. Together with Corollary 56, these estimates imply

φ
(
D ⊗ EQ

)
≤ 2nC1(e|∆K |

1
2 )n−1HPt−1(Q)|b|−b1 ,

for all D ∈ IQ. Hence, by Lemma 71(2) we conclude∫
IQ

N(D)−sφm(D)φ
(
D ⊗ EQ

)
dD = O(HPt−1(Q)|b|−b1). (2.10.6)

Now, by Proposition 58 there exists a constant β ≥ 1, depending only on K, such

that φ(D) ≤ βe−πnKe
− 2

nK
d̂eg(D)

for all D ∈ Pic(K)−, with nK = [K : Q] as usual. To-
gether with Lemma 71(1), this implies∣∣∣∣∣

∫
IQ

N(D)n−sφm(D) dD

∣∣∣∣∣ ≤ β′
∫ 1

2
log(|∆K |)−b1 log(HPt−1 (Q))

−∞
ex(n−ℜ(s))−πnKe

− 2
nK

x

dx,
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for some constant β′ > 0 depending only on K and m. Put C2 :=
|b|
b1

, and let T < 0 such that

x(n−ℜ(s))− πnKe
− 2

nK
x ≤ C2x for all x ∈]−∞, T ] and s ∈ K .

If 1
2
log(|∆K |)− b1 log(HPt−1(Q)) ≤ T , then∣∣∣∣∣

∫
IQ

N(D)n−sφm(D) dD

∣∣∣∣∣ ≤ β′
∫ 1

2
log(|∆K |)−b1 log(HPt−1 (Q))

−∞
eC2xdx

=
β′(|∆K |)

C2
2

C2HPt−1(Q)C2b1
.

Hence, on the one hand, assuming 1
2
log(|∆K |)− b1 log(HPt−1(Q)) ≤ T we get

HPt−1(Q)|b|

∣∣∣∣∣
∫
IQ

N(D)n−sφm(D) dD

∣∣∣∣∣ = O(1). (2.10.7)

On the other hand, if 1
2
log(|∆K |)− b1 log(HPt−1(Q)) ≥ T then HPt−1(Q) is bounded above

by a constant that depends only on K and T , hence in that case (2.10.7) also holds thanks to
Lemma 71(2).

Now we look at integrals over IIQ. First, we use Theorem 57 to get

φ
(
D ⊗ EQ

)
= (φ

(
D∨ ⊗ EQ

∨ ⊗ ωOK

)
+ 1)N(D)nHPt−1(Q)|b||∆K |−

n
2 − 1

= N(D)nHPt−1(Q)|b||∆K |−
n
2 − 1 + N(D)nHPt−1(Q)|b||∆K |−

n
2φ
(
D∨ ⊗ EQ

∨ ⊗ ωOK

)
.

This implies∫
IIQ

N(D)−sφm(D)φ
(
D ⊗ EQ

)
dD

= |∆K |−
n
2HPt−1(Q)|b|

∫
IIQ

N(D)n−sφm(D)φ
(
D∨ ⊗ EQ

∨ ⊗ ωOK

)
dD

+ |∆K |−
n
2HPt−1(Q)|b|

∫
IIQ

N(D)n−sφm(D) dD

−
∫
IIQ

N(D)−sφm(D) dD.

(2.10.8)

From Lemma 71(2) we know that∫
IIQ

N(D)−sφm(D) dD = O(1). (2.10.9)

Now, note that for D ∈ IIQ we have D∨ ⊗ (E
(i)
Q )∨ ⊗ ωOK

∈ Pic(K)− for all i ∈ {1, . . . , n},
hence by Proposition 58 we get

φ(D∨ ⊗ (E
(i)
Q )∨ ⊗ ωOK

) ≤ βe−πnK(|∆K |−1 N(D)HPt−1 (Q)bi )
2

nK ≤ βe−C3(N(D)HPt−1 (Q)b1 )
2

nK ,
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where β ≥ 1 is the same constant as before and C3 := πnK |∆K |
− 2

nK . Combined with
Corollary 56, we conclude

φ(D∨ ⊗ EQ
∨ ⊗ ωOK

) ≤ 2nβne−nC3(N(D)HPt−1 (Q)b1 )
2

nK ,

for all D ∈ IIQ. Letting C4 > 0 be such that xe−nC3x
2

nK ≤ C4 for all x ≥ 0, we get

N(D)HPt−1(Q)b1e−nC3(N(D)HPt−1 (Q)b1 )
2

nK ≤ C4,

thus

HPt−1(Q)|b|
∫
IIQ

N(D)n−sφm(D)φ
(
D∨ ⊗ E∨

Q ⊗ ωOK

)
dD

≤ C42
nβnHPt−1(Q)|b|−b1

∫
IIQ

N(D)n−1−sφm(D) dD = O(HPt−1(Q)|b|−b1),

(2.10.10)

by Lemma 71(2). The desired result then follows from (2.10.6), (2.10.7), (2.10.8), (2.10.9)
and (2.10.10). This completes the proof of the lemma.

Lemma 73. Given negative integers 0 > b1 ≥ b2 ≥ · · · ≥ bn and Q ∈ Pt−1, define

EQ := OPt−1(b1)Q ⊕ · · · ⊕ (OPt−1(bn))Q.

Then, there exist β, γ > 0, depending only on K and n, such that for every D ∈ Pic(K)− we
have

φ(D ⊗ EQ) ≤ βe−γe
− 2

nK
d̂eg(D)

e−γHPt−1 (Q)
2

nK ,

where nK = [K : Q] as usual.

Proof. By Corollary 56 it is enough to prove the lemma in the case n = 1. Since

d̂eg(D ⊗ OPt−1(b1)Q) = d̂eg(D) + b1 log(HPt−1(Q)) ≤ 1

2
log(|∆K |),

we can use Proposition 60. This shows that there exists a constant β > 0, depending only
on K, such that

φ(D ⊗ OPt−1(b1)Q) ≤ βe−πnKe
− 2

nK
(d̂eg(D)+b1 log(HPt−1 (Q)))

= βe−πnKe
− 2

nK
d̂eg(D)

HPt−1 (Q)
2

nK ,

where in the last inequality we used that b1 ≤ −1. Putting A := e
− 2

nK
d̂eg(D) and B :=

HPt−1(Q)
2

nK , we see that A ≥ |∆K |
− 1

nK and B ≥ 1, hence there exists a constant ρ > 0,
depending only on K, such that AB ≥ ρ(A+B). This implies

φ(D ⊗ OPt−1(b1)Q) ≤ βe−γe
− 2

nK
d̂eg(D)

e−γHPt−1 (Q)
2

nK ,

with γ = πnKρ. This proves the lemma.
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Notation 74. In the proof of Theorem 70 below, we put φ(D⊕m) := 0 when m = 0.

Proof of Theorem 70. Given P ∈ X(K) we put Q := π(P ). Then, we have P ∈ P(WQ)(K)
with W defined in (2.10.1). Moreover, if P ∈ F (K) then P ∈ P(Y ∨

Q )(K) and HP(WQ)(P ) =

HP(Y ∨
Q )(P ). Indeed, this follows from the fact that Y ∨

Q ⊆ WQ, which implies that OY ∨
Q
(−1)P =

OWQ
(−1)P . Then, taking duals and norms leads to the equality of heights. From this

and (2.10.2), we get

ZU,L(s) =
∑

P∈U(K)

(
HP(Wπ(P ))(P )λHPt−1 (π(P ))µ

)−s

=
∑

Q∈Pt−1(K)

HPt−1 (Q)−µs

 ∑
P∈P(WQ)(K)

HP(WQ)(P )−λs −
∑

P∈P(Y ∨
Q )(K)

HP(WQ)(P )−λs


=

∑
Q∈Pt−1(K)

HPt−1 (Q)−µs
(
ZP(WQ)(λs)− ZP(Y ∨

Q )(λs)
)
.

Now, fixing Q ∈ Pt−1(K) and using Proposition 63(2), we have

wKξK(λs) ZP(WQ)(λs)

= RKhK |∆K |−
λs
2

(
N(WQ)

λs− (r + 1)
− 1

λs

)
+

∫
Pic(K)−

N(D)−λsφ(D ⊗ WQ) dD

+N(WQ)|∆K |
r+1
2

−λs

∫
Pic(K)−

N(D)λs−(r+1)φ(D ⊗ WQ
∨
) dD.

Similarly, since Y ∨ has rank r, we have

wKξK(λs) ZP(Y ∨
Q )(λs)

= RKhK |∆K |−
λs
2

(
N(Y ∨

Q )

λs− r
− 1

λs

)
+

∫
Pic(K)−

N(D)−λsφ(D ⊗ Y ∨
Q ) dD

+N(Y ∨
Q )|∆K |

r
2
−λs

∫
Pic(K)−

N(D)λs−rφ(D ⊗ YQ) dD.

Hence, we can write

wKξK(λs) ZU,L(s) =
5∑

j=1

Fj(s),
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where

F1(s) :=
RKhK |∆K |−

λs
2

λs− (r + 1)

∑
Q∈Pt−1(K)

HPt−1 (Q)−µs N(WQ),

F2(s) := −RKhK |∆K |−
λs
2

λs− r

∑
Q∈Pt−1(K)

HPt−1 (Q)−µs N(Y ∨
Q ),

F3(s) :=
∑

Q∈Pt−1(K)

HPt−1 (Q)−µs

∫
Pic(K)−

N(D)−λs
(
φ(D ⊗ WQ)− φ(D ⊗ Y ∨

Q )
)

dD,

F4(s) := |∆K |
r+1
2

−λs
∑

Q∈Pt−1(K)

HPt−1 (Q)−µsN(WQ)

∫
Pic(K)−

N(D)λs−(r+1)φ(D ⊗ WQ
∨
) dD,

F5(s) := −|∆K |
r
2
−λs

∑
Q∈Pt−1(K)

HPt−1 (Q)−µs N(Y ∨
Q )

∫
Pic(K)−

N(D)λs−rφ(D ⊗ YQ) dD.

We are going to analyze each of these functions separately. First, we compute

N(Y ∨
Q ) = N(WQ) = N((OPt−1)Q ⊕ OPt−1(ar)Q ⊕ · · · ⊕ OPt−1(ar − ar−1)Q)

= HPt−1(Q)(r+1)ar−|a|.
(2.10.11)

This implies

F1(s) =
RKhK |∆K |−

λs
2

λs− (r + 1)
ZPt−1 (µs+ |a| − (r + 1)ar) ,

hence by Theorem 65 the function F1(s) is holomorphic in ℜ(s) > 1+(r+1)ar−|a|
µ

, s ̸= λL, s ̸=
µL. Similarly,

F2(s) = −RKhK |∆K |−
λs
2

λs− r
ZPt−1 (µs+ |a| − (r + 1)ar) ,

hence F2(s) is holomorphic in ℜ(s) > 1+(r+1)ar−|a|
µ

, s ̸= r
λ
, s ̸= µL.

We now focus on the function F3(s). First, note that WQ = Y ∨
Q ⊕ (OPt−1)Q and hence,

using Lemma 55(2), we can compute

φ(D ⊗ WQ) = φ(D ⊗ (Y ∨
Q ⊕ (OPt−1)Q))

= φ(D ⊗ Y ∨
Q ) + φ(D ⊗ (OPt−1)Q) + φ(D ⊗ Y ∨

Q )φ(D ⊗ (OPt−1)Q)

= φ(D ⊗ Y ∨
Q ) + φ(D) + φ(D ⊗ Y ∨

Q )φ(D).

We deduce that F3(s) = G1(s) +G2(s), where

G1(s) :=
∑

Q∈Pt−1(K)

HPt−1 (Q)−µs

∫
Pic(K)−

N(D)−λsφ(D) dD

=ZPt−1 (µs)

∫
Pic(K)−

N(D)−λsφ(D) dD,
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and

G2(s) :=
∑

Q∈Pt−1(K)

HPt−1 (Q)−µs

∫
Pic(K)−

N(D)−λsφ(D ⊗ Y ∨
Q )φ(D) dD.

By Lemma 71(1) with m = 0, together with Theorem 65, the function G1(s) is holomorphic
in ℜ(s) > t

µ
. In order to analyze the function G2(s), put a0 := 0 an recall that NX = #{i ∈

{1, . . . , r} : ai = ar}, so we can write

Y ∨
Q = (OPt−1)Q

⊕(NX−1)
⊕ EQ

where EQ is the direct sum of the line bundles OPt−1(ar − ai))Q over i ∈ {0, . . . , r − 1}
with ai < ar. Using Lemma 55(2) again, we have

φ(D ⊗ Y ∨
Q ) = φ(D⊕(NX−1)) + φ(D ⊗ EQ) + φ(D⊕(NX−1))φ(D ⊗ EQ).

We now use Lemma 72 with n = r−(NX−1), b1 = ar−ar−NX
, b2 = ar−ar−NX−1, . . . , bn =

ar, and m = 0, and also with m = NX − 1 if NX > 1, in order to write

G2(s) = G̃2(s) + |∆K |
NX−(r+1)

2

∑
Q∈Pt−1(K)

HPt−1 (Q)−µs+(r+1)ar−|a|

×
∫
Pic(K)−

N(D)r−(NX−1)−λsφ(D)(1 + φ(D⊕(NX−1))) dD

= G̃2(s) + |∆K |
NX−(r+1)

2 ZPt−1(µs+ |a| − (r + 1)ar)

×
∫
Pic(K)−

N(D)r−(NX−1)−λsφ(D)(1 + φ(D⊕(NX−1))) dD,

with G̃2(s) an analytic function on ℜ(s) > t+(r+1)ar−|a|−b1
µ

=
t+rar+ar−NX

−|a|
µ

. Hence,

F3(s) = G1(s) + G̃2(s) + |∆K |
NX−(r+1)

2 ZPt−1(µs+ |a| − (r + 1)ar)

×
∫
Pic(K)−

N(D)r−(NX−1)−λsφ(D)(1 + φ(D⊕(NX−1))) dD,

with G1(s) + G̃2(s) analytic in ℜ(s) > t+rar+ar−NX
−|a|

µ
.

In order to analyze the function F4(s), we start by using (2.10.11) to write

F4(s) = |∆K |
r+1
2

−λs
∑

Q∈Pt−1(K)

HPt−1 (Q)−µs+(r+1)ar−|a|

×
∫
Pic(K)−

N(D)λs−(r+1)φ(D ⊗ W ∨
Q ) dD.

Now we write
W ∨

Q = (OPt−1)Q
⊕NX ⊕ E∨

Q
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with E∨
Q the sum of the line bundles OPt−1(ai − ar)Q over i ∈ {0, . . . , r − 1} with ai < ar.

By Lemma 55(2) we have

φ(D ⊗ W ∨
Q ) = φ(D⊕NX ) + φ(D ⊗ E∨

Q) + φ(D⊕NX )φ(D ⊗ E∨
Q).

Hence, we can write F4(s) = G3(s) +G4(s) where

G3(s) := |∆K |
r+1
2

−λs ZPt−1 (µs+ |a| − (r + 1)ar)

∫
Pic(K)−

N(D)λs−(r+1)φ(D⊕NX ) dD,

G4(s) := |∆K |
r+1
2

−λs
∑

Q∈Pt−1(K)

HPt−1 (Q)−µs+(r+1)ar−|a|

×
∫
Pic(K)−

N(D)λs−(r+1)
(
φ(D ⊗ E∨

Q) + φ(D⊕NX )φ(D ⊗ E∨
Q)
)

dD.

On the one hand, by Theorem 65 and Proposition 63(1), the series G3(s) extends to a holo-
morphic function in ℜ(s) > 1+(r+1)ar−|a|

µ
, s ̸= µL. On the other hand, using Lemmas 73

and 71(1) to bound φ(D ⊗ E∨
Q) and φ(D⊕NX ), respectively, we see that the series G4(s)

converges absolutely and uniformly for s in compact subsets of C, hence G4(s) extends to an
entire function. We conclude that F4(s) is holomorphic in ℜ(s) > 1+(r+1)ar−|a|

µ
, s ̸= µL.

Finally, the analysis of the function F5(s) is analogous to that of F4(s), and we get
that F5(s) = G5(s) +G6(s) with

G5(s) := −|∆K |
r
2
−λs ZPt−1 (µs+ |a| − (r + 1)ar)

∫
Pic(K)−

N(D)λs−rφ(D⊕(NX−1)) dD,

and G6(s) entire. In particular, F5(s) is holomorphic in ℜ(s) > 1+(r+1)ar−|a|
µ

, s ̸= µL.

Putting everything together, and recalling that t ≥ 2 and ar ≥ 1, we obtain the following:

1. If λL = µL, then ZU,L(s) is holomorphic in

ℜ(s) > max

{
1 + (r + 1)ar − |a|

µ
,
r

λ
,
t+ rar + ar−NX

− |a|
µ

}
, s ̸= λL

and it has a pole of order two at s = λL (coming from F1) with

lim
s→λL

(s− λL)
2 ZU,L(s) =

RKhK |∆K |−
r+1
2

wKλµξ(r + 1)
Ress=t ZPt−1(s) =

R2
Kh

2
K |∆K |−

(d+2)
2

w2
KλµξK(r + 1)ξK(t)

.

2. If λL > µL, then ZU,L(s) has holomorphic continuation to

ℜ(s) > max
{ r
λ
, µL

}
, s ̸= λL

and it has a simple pole at s = λL (coming from F1) with

lim
s→λL

(s− λL) ZU,L(s) =
RKhK |∆K |−

r+1
2

wKλξ(r + 1)
ZPt−1 (µλL + |a| − (r + 1)ar) .
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3. If λL < µL then ZU,L(s) is holomorphic in

ℜ(s) > max

{
λL,

1 + (r + 1)ar − |a|
µ

,
t+ rar + ar−NX

− |a|
µ

}
, s ̸= µL

and it has a possible singularity at s = µL (coming from F1, F2, F3, G3 and G5) with

lim
s→µL

(s− µL) ZU,L(s) =
RKhK |∆K |−

t
2

w2
KµξK(λµL)ξK(t)

(
RKhK |∆K |−

λµL
2

λµL − (r + 1)
− RKhK |∆K |−

λµL
2

λµL − r

+ |∆K |
NX−(r+1)

2

∫
Pic(K)−

N(D)r−(NX−1)−λµLφ(D)(1 + φ(D⊕(NX−1))) dD

+ |∆K |
r+1
2

−λµL

∫
Pic(K)−

N(D)λµL−(r+1)φ(D⊕NX ) dD

−|∆K |
r
2
−λµL

∫
Pic(K)−

N(D)λµL−rφ(D⊕(NX−1)) dD
)
.

Furthermore, in this case we can write (using Lemma 55(2))

φ(D)(1 + φ(D⊕(NX−1))) = φ(D⊕NX )− φ(D⊕(NX−1)),

and use Proposition 63(2), together with formula (2.9.3) when NX = 1 or 2, to get

lim
s→µL

(s− µL) ZU,L(s) =
RKhK |∆K |−

t
2

w2
KµξK(λµL)ξK(t)

wK |∆K |
NX−(r+1)

2 ξK(λµL +NX − (r + 1))

×
(
ZPNX−1(λµL +NX − (r + 1))− ZPNX−2(λµL +NX − (r + 1))

)
.

Since this value is positive, we conclude that ZU,L(s) has a simple pole at s = µL in
this case.

Then, the asymptotic formula for N(U,H|L, B) follows from these properties, together with (2.10.4)
and Theorem 27. This completes the proof of the theorem.

Remark 75. The different cases that appear in Theorem 70 give a subdivision of the big cone
of X , i.e., the interior of Λeff (see Figure 2.1 for an illustration). The line bundles L contained
in the ray passing through the anticanonical class have height zeta functions with a double
pole at s = λL = µL, while line bundles outside this ray have λL ̸= µL and have height zeta
functions with a simple pole at s = max{λL, µL}.

In Theorem 70 we have omitted the case when ar = 0. This is because in the case ar = 0
we have Xd(a1, . . . , ar) ≃ Pt−1 × Pr, and there is no need to remove a proper subvariety
of X to obtain the “correct” growth of the number of rational points of bounded height. Note
that, in this case, we have

λL =
r + 1

λ
, µL =

t

µ
.
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µ

λ

−KX

µ =
(

(r+1)ar−|a|+t
r+1

)
λ

µ <
(

(r+1)ar−|a|+t
r+1

)
λ

µ >
(

(r+1)ar−|a|+t
r+1

)
λ

Figure 2.1: Subdivision of the big cone of X .

Theorem 76. Let X ≃ Pt−1 × Pr be a Hirzebruch–Kleinschmidt variety over the number
field K with ar = 0, and let L = λh + µf be a big line bundle class in Pic(X). Then, we
have

N(X,HL, B) ∼ CL,KB
a(L) log(B)b(L) as B → ∞,

with CL,K given by 
R2

Kh2
K |∆K |−

(d+2)
2

w2
K(r+1)µξK(r+1)ξK(t)

if λL = µL,

RKhK |∆K |−
r+1
2

wK(r+1)ξ(r+1)
ZPt−1 (µλL) if λL > µL,

RKhK |∆K |−
t
2

wKtξK(t)
ZPr(λµL) if λL < µL.

One can adapt the proof of Theorem 70 to give a proof of Theorem 76. Instead of doing
that, we present a simpler argument based only on the analytic properties of the height zeta
functions of the projective spaces Pt−1 and Pr.

Proof. We have

ZX,L(s) :=
∑

P∈X(K)

HL(P )−s = ZPr(λs) ZPt−1(µs).

Then, using Theorem 65 we see that ZX,L(s) is holomorphic in

ℜ(s) > max

{
1

λ
,
1

µ

}
, s ̸= λL, s ̸= µL,

and it has a double pole at s = λL if λL = µL, and a simple pole at s = max{λL, µL} if λL ̸=
µL. Then, the result follows by using Theorem 65 to compute lims→a(L)(s−a(L))b(L)ZX,L(s),
and using Theorem 27.
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Example 77. Consider the variety X2(0) ≃ P1 × P1 and L = 3h + f , so that λL = 2
3

and µL = 2. Then, we get

N(X,HL, B) ∼ CL,KB
2 as B → ∞,

with CL,K = RKhK |∆K |−1

wK2ξK(2)
ZP1(6). In the case K = Q, a simple computation gives

ZP1(s) = 2 + 2
ζ(s/2)

ζ(s)
L−4(s/2), where L−4(s) :=

∞∑
n=1

(
−4

n

)
n−s.

Hence, using that L−4(3) =
π3

32
(see e.g [10, p. 189]) and ζ(6) = π6

945
, we get

CL,Q =
6

π

(
1 +

945ζ(3)

32π3

)
= 4.09640530 . . . .

Note that CL,Q = C ′ +C ′′ where C ′, C ′′ are the constants appearing at the end of Example 4
in the Introduction (because X2(0) ≃ U ′ ⊔ F ′ in the notation used there).

2.10.2 The anticanonical height

In the case λ = r+1 and µ = (r+1)ar + t−|a| we get L = −KX by Proposition 30(2),
hence HL is the anticanonial height function H = H−KX

. Moreover, λL = µL = 1 according
to (2.10.3). When ar > 0, Theorem 70 gives the asymptotic formula

N(U,H,B) ∼ CB log(B) as B → ∞,

with C given by (0.0.5). Assume ar = 0. Then X ≃ Pt−1 × Pr and F ≃ Pt−1 × Pr−1

if r ≥ 2, while F ≃ Pt−1 if r = 1. By Lemmas 33 and 34, together with Theorem 76 and
Corollary 66, we have

N(X,H,B) ∼ CB log(B),

N(F,H,B) ∼ CrB

as B → ∞, with the same C as before and Cr another explicit constant3. In any case, this
implies

N(U,H,B) = N(X,H,B)−N(F,H,B) ∼ CB log(B) as B → ∞.

This proves Theorem 2.

3The exact value is Cr = RKhK |∆K |−
t
2

wKtξK(t) ZPr−1 (r + 1) if r ≥ 2, and RKhK |∆K |−
t
2

wKtξK(t) if r = 1.
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2.10.3 Accumulation of rational points

In the literature, there are different notions that capture the idea of subvarieties having too
many rational points. Since our aim in this chapter is to give explicit asymptotic formulas that
allow for quantitative comparisons, we introduce the following relative notion of subvarieties
accumulating more rational points than others.

Definition 78. Let Y1, Y2 ⊆ X be two subvarieties of a Hirzebruch–Kleinschmidt variety X ,
and let L ∈ Pic(X) be a big line bundle class. Assume that #Y1(K) = #Y2(K) = ∞ and
that N(Y1, HL, B) and N(Y2, HL, B) are both finite for every B > 0. Then, we say that Y1

strongly accumulates more rational points of bounded HL-height than Y2 if

lim
B→∞

N(Y2, HL, B)

N(Y1, HL, B)
= 0. (2.10.12)

Theorems 70 and 76 lead to the following corollary.

Corollary 79. Let X = Xd(a1, . . . , ar) be a Hirzebruch–Kleinschmidt variety over the num-
ber field K with ar > 0 and good open subset U = Ud(a1, . . . , ar), and let L = λh + µf be
a big line bundle class in Pic(X). Then, the following properties hold:

1. If r > 1, assume µ > λ(ar − ar−1) so that L|F is big on the subvariety F ≃
Xd−1(a1, . . . , ar−1) of X . Then, the the good open subset U ′ ≃ Ud−1(a1, . . . , ar−1)
of F strongly accumulates more rational points of bounded HL-height than U if and
only if

max{λL, µL} < µL|F , (2.10.13)

where µL|F = rar−1+t−|a|+ar
µ−λ(ar−ar−1)

.

2. If r = 1, assume µ > λa1 so that L|F is big on F ≃ Pt−1. Then, F strongly accumu-
lates more rational points of bounded HL-height than U if and only if (2.10.13) holds,
where µL|F = t

µ−a1
.

Proof. Assume r > 1 and µ > λ(ar − ar−1). By Theorem 70 the good open subset U ′ of F
strongly accumulates more rational points of bounded HL-height than U if and only if

max{λL, µL} < max{λL|F , µL|F }, or max{λL, µL} = λL|F = µL|F and λL ̸= µL.

Since λL|F = r
λ
< r+1

λ
= λL, we see that the second case cannot occur. This proves (1).

Now, if r = 1 and µ > λa1, then by Lemma 34 the height function HL restricted to F
corresponds to the power Hµ−λa1

Pt−1 of the standard height function of Pt−1. By Theorems 70
and Corollary 66 we see that F strongly accumulates more rational points of bounded HL-
height than U if and only if (2.10.13) holds. This completes the proof of the corollary.

Remark 80. One can also define a weaker relative notion of subvarieties accumulating more
rational points than others, by replacing condition (2.10.12) with

0 < lim sup
B→∞

N(Y2, HL, B)

N(Y1, HL, B)
< 1.
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Then, in all possible cases, one can use the explicit formulas in Theorems 70, 76 and Corol-
lary 66 to decide when U ′ (resp. F ) weakly accumulates more rational points of bounded HL-
height than U . For instance, in the case (a1, a2) = (0, 1) of Example 4, we saw that U ′ weakly
accumulates more rational points of bounded anticanonical height than F ′.

2.10.4 Example: Hirzebruch surfaces

For an integer a > 0 consider the Hirzebruch surface

X = X2(a) = P(OP1 ⊕ OP1(−a)),

which we consider as a variety over K = Q for simplicity. In the basis {h, f} of Pic(X)
given in Proposition 30, choose a big line bundle class L = λh+ µf . We then have

λL =
2

λ
, µL =

a+ 2

µ
.

We write U = U2(a) and F = P(OP1(−a)), so that

X = U ⊔ F ≃ U2(a) ⊔ P1.

Using that ξQ(s) = (2πs/2)−1Γ(s/2)ζ(s) and ζ(2) = π2

6
, we get by Theorem 70 the asymp-

totic formula

N(U,HL, B) ∼ CL

{
BλL log(B), if λL = µL,
Bmax{λL,µL}, if λL ̸= µL,

as B → ∞, where

CL =


18
π2µ

if λL = µL,
3
π
ZP1 (µλL − a) if λL > µL,
6ξQ(λµL−1)

π(a+2)ξQ(λµL)
if λL < µL.

(2.10.14)

Now, the restriction L|F of the line bundle class L to F ≃ P1 is big if and only if µ > λa. In
this case, by Corollary 66, we have

N(F,HL, B) ∼ 3

π
B

2
µ−λa as B → ∞.

As in Corollary 79(2), we have that F strongly accumulates more points of bounded HL-
height than U if and only if

max

{
2

λ
,
a+ 2

µ

}
<

2

µ− λa
,

which is easily seen to be equivalent

λa < µ < λ(a+ 1).

Finally, we turn our attention to the numerical value of the constant CL in (2.10.14).
Assuming a = 1 for simplicity, we get the following first values of CL depending on the
choice of L = λh+ µf . Here, as in Example 77, we use the Dirichlet L-function L−4(s) :=∑∞

n=1

(−4
n

)
n−s.
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λ µ Case CL

1 1 λL < µL
2ξQ(2)
πξQ(3)

= 2π
3ζ(3)

= 1.74234272 . . .

1 2 λL > µL
3
π
ZP1(3) = 6

π

(
1 + ζ(3/2)L−4(3/2)

ζ(3)

)
= 5.49807267 . . .

1 3 λL > µL
3
π
ZP1(5) = 6

π

(
1 + ζ(5/2)L−4(5/2)

ζ(5)

)
= 4.25372490 . . .

2 1 λL < µL
2ξQ(5)
πξQ(6)

= 2835ζ(5)
4π6 = 0.76443811 . . .

2 2 λL < µL
2ξQ(2)
πξQ(3)

= 2π
3ζ(3)

= 1.74234272 . . . . . .

2 3 λL = µL
6
π2 = 0.60792710 . . .

3 1 λL < µL
2ξQ(8)
πξQ(9)

= 32π7

165375ζ(9)
= 0.58325419 . . .

3 2 λL < µL
2ξQ(7/2)
πξQ(9/2)

= 2ζ(7/2)Γ(7/4)√
πζ(9/2)Γ(9/4)

= 0.97781868 . . .

3 3 λL < µL
2ξQ(2)
πξQ(3)

= 2π
3ζ(3)

= 1.74234272 . . . . . .

Remark 81. The case X2(1) = P(OP1 ⊕ OP1(−1)) was already studied by Serre (see [35,
Section 2.12]), and revisited by Batyrev and Manin in [2, Section 1.6] and by Peyre in [27,
Proposition 2.7]. Following the notation in [27], one realizes X2(1) as the variety

V =
{
([y0, y1, y2], [z0, z1]) ∈ P2 × P1 : y0z1 = y1z0

}
.

Then, for integers r, s, the height function Hr,s on V (Q) defined by

Hr,s(([y0, y1, y2], [z0, z1])) :=
√

y20 + y21 + y22

r+s√
z20 + z21

−s

,

for (y0, y1, y2) ∈ Z3 and (z0, z1) ∈ Z2 primitive, corresponds to our height function HL

with L = (r + s)h + rf . Moreover, the divisor E ⊂ V defined in loc. cit. by y0 = y1 = 0
corresponds to our subbundle F . In the particular case of r = 1 and s = 0, corresponding
to λ = µ = 1, we see that

N(V \ E,H1,0, B) ∼ 1

2
#

{
(y0, y1, y2) ∈ Z3 primitive, such that

√
y20 + y21 + y22 ≤ B

}
∼ 2π

3ζ(3)
B3 as B → ∞

(see, e.g. [9]). This matches our computations, since in the case λ = µ = 1 we get

N(U,HL, B) ∼ CLB
3, CL =

2ξQ(2)

πξQ(3)
=

2π

3ζ(3)
.



Chapter 3

Global function fields case

3.1 Basic notation

Let C be a projective, smooth, geometrically irreducible curve of genus g defined over the
finite field Fq of q elements (as usual, q is a positive power of a rational prime). Throughout
this article we let K denote a finite extension of the rational function field Fq(C ) of C .
Associated to K we have the following objects (see e.g. [33] for details):

• The set of valuations Val(K) of K, which is in bijection with the set of closed points
of C .

• For each v ∈ Val(K), let Ov be the associated valuation ring and mv its maximal ideal,
kv := Ov/mv and fv := [kv : Fq], so we have #kv = qfv . We define for x ∈ K,
|x|v := q−fvv(x), so that for every x ∈ K, x ̸= 0 we have the product formula∏

v

|x|v = 1. (3.1.1)

• The free abelian group Div(K) generated by Val(K). The elements of Div(K) are
finite sums of the form

∑
v∈VK

nvv with nv ∈ Z and nv = 0 for all but finitely many v ∈
Val(K).

• For D =
∑

v∈Val(K) nvv ∈ Div(K) and v ∈ Val(K) define v(D) := nv and set

Div+(K) := {D ∈ Div(K) : v(D) ≥ 0, ∀v ∈ Val(K)}.

Moreover, for D1, . . . , Dn ∈ Div(K), we put

sup(D1, . . . , Dn) :=
∑

v∈Val(K)

sup{v(D1), . . . , v(Dn)}v.

• For x ∈ K×, define the divisor of x as (x) := (x)0 − (x)∞ where

(x)0 :=
∑

v∈Val(K)
v(x)>0

v(x)v, (x)∞ := −
∑

v∈Val(K)
v(x)<0

v(x)v.
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We also put (0) = (0)0 = (0)∞ = 0.

• The degree function deg : Div(K) → Z defined by deg(D) :=
∑

v∈Val(K) fvv(D). We
have deg((x)) = 0 for all x ∈ K (by the product formula (3.1.1) in the case x ̸= 0).

• The class number hK = #(Div0(K)/(K)), where Div0(K) := {D ∈ Div(K) :
deg(D) = 0} and (K) := {(x) : x ∈ K}.

For a vector a = (a1, . . . , ar) ∈ Nr
0, we write |a| =

∑r
i=1 ai.

3.2 Arithmetic tools

Let ℓ(D) = dimFq H
0(C ,OC (D)), where

H0(C ,OC (D)) = {x ∈ K× : (x) +D ≥ 0} ∪ {0}.

Note that ℓ(D) = 0 if deg(D) < 0 and if D ≥ 0 then #{x ∈ K : (x)∞ ≤ D} = qℓ(D). As a
consequence of the Riemann–Roch theorem for curves we have that

ℓ(D)− ℓ(KC −D) = deg(D) + 1− g,

and if deg(D) > 2g − 2 = deg(KC ) then

ℓ(D) = deg(D) + 1− g,

where KC is a canonical divisor of the curve C .

We also define the zeta function

ZK(T ) =
∑
D≥0

T deg(D) =
∏

v∈Val(K)

(
1− T fv

)
,

and define the Dedekind zeta function of K by mean of

ζK(s) = ZK(q
−s).

Then ζK(s) converges for ℜ(s) > 1 (see e.g. [38, Chapter VII, Theorem 4]) and has mero-
morphic continuation with a simple pole at s = 1 and residue

hq1−g

(q − 1) log(q)
,

where h = #{D ∈ Div(K) : deg(D) = 0}.

In the case of positive characteristic, we will make use of the equations, so we will work
with the following definition motivated by Theorem 12.

Definition 82. Given integers r ≥ 1, t ≥ 2 and 0 ≤ a1 ≤ · · · ≤ ar, the Hirzebruch–
Kleinschmidt variety Xd(a1, . . . , ar) is defined as the subvariety of Ptr × Pt−1 given in ho-
mogeneous coordinates ([x0 : (xij)i∈It,j∈Ir ], [y1 : . . . : yt]) by the equations

xmjy
aj
n = xnjy

aj
m , for all j ∈ Ir and all m,n ∈ It with m ̸= n, (3.2.1)

where d = dim(Xd(a1, . . . , ar)) = r + t− 1 and Ik = {1, . . . , k} ⊂ Z.
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3.3 Effective divisors

The following description of the cone of effective divisors on Xd(a1, . . . , ar) is an adap-
tation of Proposition 30, since in this chapter we have

Xd(a1, . . . , ar) = P(OPt−1 ⊕ OPt−1(a1)⊕ · · · ⊕ OPt−1(ar)).

Proposition 83. Let X = Xd(a1, . . . , ar) be a Hirzebruch–Kleinschmidt variety and let us
denote by f the class of π∗OPt−1(1) and by h the class of OX(1), both in Pic(X). Then:

1. Pic(X) ≃ Zh⊕ Zf .

2. The anti-canonical divisor class of X is given by

−KX = (r + 1)h+ (t− |a|) f,

where |a| =
∑r

i=1 ai.

3. The cone of effective divisors of X is given by

Λeff(X) = {γh+ ξf : γ ≥ 0, ξ ≥ −γar} ⊂ Pic(X)R

where Pic(X)R := Pic(X)⊗Z R.

In particular, L = γh+ ξf ∈ Pic(X) is big if and only if γ > 0 and f > −γar.

3.4 Height zeta function of projective space

For an integer n ≥ 1, as we mention before, consider in the projective space Pn over K,
with the naive height function

HPn([x0, . . . , xn]) :=
∏

v∈Val(K)

sup{|x0|v, |x1|v, . . . , |xn|v},

and the associated height zeta function

ζPn(s) :=
∑

P∈Pn(K)

HPn(P )−s for s ∈ C with ℜ(s) ≫ 0.

The goal of this section is to state the following well-known theorem, for which we give a
proof for convenience of the reader.

Theorem 84. The height zeta function ζPn(s) converges absolutely on ℜ(s) > n + 1, and it
is a rational function on q−s. Moreover, it has a simple pole at s = n+ 1 with residue

Ress=n+1 ζPn(s) =
hKq

(n+1)(1−g)

ζK(n+ 1)(q − 1) log(q)
.
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Proof. The fact that ζPn(s) is a rational function on q−s follows from [37, Theorem 3.2].
Now, for m ≥ 1 put N(m) := #{P ∈ Pn(K) : H(P ) = m}. By definition of the standard
height function, we have N(m) = 0 if m is not of the form m = qd with d ≥ 0 an integer.
Hence

ζPn(s) =
∑
d≥0

N(qd)q−ds.

Now, by [35, Section 2.5], we have the estimate

N(qd) =
hKq

(n+1)(1−g)

ζK(n+ 1)(q − 1)
qd(n+1) +O(qdn) as d → ∞. (3.4.1)

This implies that ζPn(s) converges absolutely on ℜ(s) > n+ 1, and moreover

ζPn(s) =
hKq

(n+1)(1−g)

ζK(n+ 1)(q − 1)

(
1

1− q(n+1)−s

)
+ F (s),

with F (s) an analytic function on ℜ(s) > n. Hence, we also get

Ress=n+1ζPn(s) =
hKq

(n+1)(1−g)

ζK(n+ 1)(q − 1)

(
lim

s→n+1

s− (n+ 1)

1− q(n+1)−s

)
=

hKq
(n+1)(1−g)

ζK(n+ 1)(q − 1) log(q)
.

This shows the desired results and completes the proof of the theorem.

Remark 85. 1. A better estimate for the error term in (3.4.1) is given in [37, Corollary
4.3], which is related to the fact that ζPn(s) is analytic in ℜ(s) ∈

]
1
2
, n+ 1

[
. For our

purposes, we do not require such a strong result.

2. Theorem 84 also follows from [29, Théorème 3.11].

3.5 Counting rational points on Hirzebruch–Kleinschmidt
varieties

In this section, we use the explicit equations for Hirzebruch–Kleinschmidt varieties to
count rational points on them. To do this, we first present some lemmas concerning Möbius
inversion and the calculation of the supremum of divisors.

In the notation of Proposition 83, let L = γh+ ξf be the class of a big line bundle. Then,
the height function induced by L on the set of rational points of Xd(a1, . . . , ar) is

HL (([x0 : (xij)i∈It,j∈Ir ], [y1 : . . . : yt])) :=
∏

v∈Val(K)

sup
i∈It,j∈Ir

{|x0|v, |xij|v}γ
∏

v∈Val(K)

sup
i∈It

{|yi|v}ξ .

(3.5.1)

It is easy to see that this height function is associated to an adelic metrization of L in the
sense of [29, Secion 1.2]. We refer to this as the “standard metrization” of L.

To carry out the counting of rational points, we find it necessary to remove a closed set in
order to ensure the convergence of the zeta functions.
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More precisely, if we consider the equations defining the variety Xd(a1, . . . , ar) in homo-
geneous coordinates ([x0 : (xij)i∈It,j∈Ir ], [y1 : . . . : yt]) of Prt × Pt−1 (see Definition 82), we
need to remove the closed subvariety defined by the single equation {xtr = 0}.

Definition 86. Given integers r ≥ 1, t ≥ 2 and 0 ≤ a1 ≤ · · · ≤ ar defining the Hirzebruch–
Kleinschmidt variety as the subvariety of Prt × Pt−1 given by the equations

xmjy
aj
n = xnjy

aj
m , for all j ∈ Ir and all m,n ∈ It with m ̸= n, (3.5.2)

where d = dim(Xd(a1, . . . , ar)) = r+ t− 1, we define the good open subset Ud(a1, . . . , ar)
of Xd(a1, . . . , ad) as the complement of the closed subvariety defined by the equation xtr = 0.

3.5.1 Decomposition of Hirzebruch–Kleinschmidt varieties

Note that for 1 ≤ r′ ≤ r and 2 ≤ t′ ≤ t, there is a natural embedding

Xt′+r′−1(a1, . . . , ar′) ↪→ Xd(a1, . . . , ar), (3.5.3)

which is given in coordinates by

([x0 : (xij)i∈It′ ,j∈Ir′ ], [y1 : . . . : yt′ ]) 7→ ([x0 : (x̃ij)i∈It,j∈Ir ], [y1 : . . . : yt′ : 0 : . . . : 0])

where

x̃ij =

{
xij if i ≤ t′ and j ≤ r′,
0 otherwise.

In other words, we enlarge the matrix (xij) of size t′ × r′ to a matrix of size t× r by simply
adding zero columns on the right and zero rows on the bottom, and similarly we enlarge [y1 :
. . . : yt′ ] by adding zeroes on the right.

Similarly, we consider the natural embeddings

Pr ↪→ Xd(a1, . . . , ar), [z0 : . . . : zr] 7→ ([z0 : (z̃ij)i∈It,j∈Ir ], [1 : 0 : . . . : 0]),

Pt−1 ↪→ Xd(a1, . . . , ar), [y1 : . . . : yt] 7→ ([1 : (0)i∈It,j∈Ir ], [y1 : . . . : yt]),
(3.5.4)

where

z̃ij =

{
zj if i = 1,
0 if i > 1.

Note that the images of Pt−1 and Pr inside Xd(a1, . . . , ar) intersect exactly at the point ([1 :
(0)i∈It,j∈Ir ], [1 : 0 : . . . : 0]).

For 1 ≤ r′ ≤ r and 2 ≤ t′ ≤ t, let us identify Ut′+r′−1(a1, . . . , ar′) with its image
under (3.5.3). Similarly, let us identify Pr and Pt−1 with their images under (3.5.4) the we
denote Pr

1 and Pt−1
2 , respectively.

Lemma 87. Let Xd(a1, . . . , ar) be a Hirzebruch–Kleinschmidt variety. If r ≥ 2, then we
have the disjoint union decomposition

Xd(a1, . . . , ar) = Xd−1(a1, . . . , ar−1)⊔ (Pr
1 \Pr−1

1 )⊔
( ⊔

2≤t′≤t

Ut′+r−1(a1, . . . , ar)

)
. (3.5.5)
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If r = 1, then we have the disjoint union decomposition

Xd(a1) = Pt−1
2 ⊔ (P1

1 \ {P0}) ⊔
( ⊔

2≤t′≤t

Ut′(a1)

)
, (3.5.6)

where P0 = ([1 : (0)i∈It,j∈Ir ], [1 : 0 : . . . : 0]). Moreover, given L = γh + ξf ∈ Pic(X) big,
we have the following properties:

1. For all 1 ≤ r′ ≤ r, the restriction of HL to Pr′
1 ≃ Pr′ corresponds to Hγ

Pr′ .

2. The restriction of HL to Pt−1
2 ≃ Pt−1 corresponds to Hξ

Pt−1 .

3. For 1 ≤ r′ ≤ r and 2 ≤ t′ ≤ t, the restriction of HL to Ut′+r′−1(a1, . . . , ar′) equals HL′

where L′ := γh′ + ξf ′ with {h′, f ′} the basis of Pic(Xt′+r′−1(a1, . . . , ar′)) given in
Proposition 30.

Proof. Assume r ≥ 2 and let x = ([x0 : (xij)i∈It,j∈Ir ], [y1 : . . . : yt]) ∈ Xd(a1, . . . , ar).
If xir = 0 for all i ∈ It, then x ∈ Xd−1(a1, . . . , ar−1). Assume this is not the case, and
let t′ := max{i ∈ It : yi ̸= 0}. From equation (3.5.2) with n = t′ and m = i > t′ we see that

xij = 0 for all i ∈ It with i > t′ and all j ∈ Ir.

Assume t′ = 1. Then, xij = 0 for all i ∈ It with i > 1 and all j ∈ Ir. Since x ̸∈
Xd−1(a1, . . . , ar−1), we have x1r ̸= 0, and this implies that x ∈ Pr

1 \ Pr−1
1 . Finally, as-

sume t′ > 1. Since yt′ ̸= 0, having xt′r = 0 would imply xir = 0 also for all i ̸= t′

(because of equation (3.5.2) with n = t′ and j = r), but this contradicts the fact that x ̸∈
Xd−1(a1, . . . , ar−1). So, xt′r ̸= 0 and we have in this case that x ∈ Ut′+r−1(a1, . . . , ar). This
proves that

Xd(a1, . . . , ar) = Xd−1(a1, . . . , ar−1) ∪ (Pr
1 \ Pr−1

1 ) ∪
( ⋃

2≤t′≤t

Ut′+r−1(a1, . . . , ar)

)
.

Moreover, these unions are disjoint by construction. This proves (3.5.5). The proof of the
decomposition (3.5.6) in the case r = 1 is completely analogous. Finally, the statements
about the various restrictions of the height function HL follow directly from (3.5.1). This
proves the lemma.

3.5.2 Preliminary lemmas

Definition 88. Given functions f, g : Div+(K) → C, we define their convolution product as

(f ⋆ g)(D) :=
∑

0≤D′≤D

f(D′)g(D −D′).

Moreover, we define the functions 1, δ, µ : Div+(K) → C by
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• 1(D) := 1 for every D ∈ Div+(K).

• δ(D) :=

{
1 if D = 0,
0 otherwise.

• µ(D) :=


1 if D = 0,
(−1)

∑
v v(D) if D ̸= 0 and v(D) = 0 or 1 for all v ∈ Val(K),

0 otherwise.

In particular, δ is a unit for the convolution product and 1 ⋆ µ = µ ⋆ 1 = δ.

The following result, based on a straightforward computation, is a Möbius inversion for-
mula in this context.

Lemma 89. Let D ∈ Div+(K) and let f, g : Div+(K) → C be two functions. Then, the
relation

f(D) =
∑

0≤D′≤D

g(D′)

is equivalent to
g(D) =

∑
0≤D′≤D

µ(D −D′)f(D′).

This motivates the following definition, that will be useful for counting purposes.

Definition 90. Let f, g : Div+(K) → C be functions. We say that the pair (f, g) forms a
µ-couple if they satisfy some the equivalent relations in Lemma 89.

By definition of the function δ, the pair (δ, 1) form a µ-couple and thus we have the
following result.

Lemma 91. We have the following equality of formal series∑
D≥0

µ(D)T deg(D) =
1

ZK(T )
.

Proof. Since (δ, 1) is a µ-couple, we have that∑
D′≥0

µ(D′)T deg(D′) ZK(T ) =
∑
D′≥0

µ(D′)T deg(D′)
∑
D≥0

T deg(D)

=
∑
D≥0

∑
D′≥0

µ(D′)T deg(D+D′)

=
∑
D≥0

∑
D≥D′≥0

µ(D −D′)T deg(D)

=
∑
D≥0

δ(D)T deg(D) = 1,

where the last equality follows from the definition of the function δ.
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Corollary 92. For every s ∈ C with ℜ(s) > 1, we have∑
D≥0

µ(D)q−sdeg(D) =
1

ζK(s)
,

and the series on the left hand side converges absolutely and uniformly on compact subsets
of the half-plane ℜ(s) > 1.

For computations using the supremum of divisors, we will need the following result.

Lemma 93. Let x, y ∈ K, then

sup{(x)∞, (xy)∞, (y)∞} = (x)∞ + (y)∞.

Proof. Let v ∈ Val(K). We recall that for a divisor D =
∑

v∈Val(K) nvv ∈ Div(K), we
defined v(D) = nv. In particular, we have the following four cases to consider:

1. If v(x), v(y) ≤ 0 then v ((xy)∞) = v ((x)∞) + v ((y)∞).

2. If v(x) ≤ 0 and v(y) > 0 then v ((xy)∞) ≤ v ((x)∞) and v ((y)∞) = 0.

3. If v(x) > 0 and v(y) ≤ 0 then v ((xy)∞) ≤ v ((y)∞) and v ((x)∞) = 0.

4. If v(x), v(y) > 0 then v ((xy)∞) = v ((x)∞) = v ((y)∞) = 0.

And the result follows.

Lemma 94. The good open subset Ud(a1, . . . , ar) equals the image of the map

(x1, . . . , xd) ∈ Ad 7→ ([xd, (x̃ij)i∈It,j∈Ir ], [x1, . . . , xt−1, 1]) ∈ Xd(a1, . . . , ar), (3.5.7)

where

x̃ij =


xt+j−1x

aj
i if i < t, j < r,

xt+j−1 if i = t, j < r,
xar
i if i < t, j = r,

1 if i = t, j = r,

Proof. Let P := ([x0 : (xij)i∈It,j∈Ir ], [y1 : . . . : yt]) be a point in Ud(a1, . . . , ar), and note
that the condition xtr ̸= 0 implies yt ̸= 0. Indeed, due to the equations

xtry
ar
n = xnry

ar
t (n = 1, . . . , t− 1),

the vanishing of yt would imply that all the coordinates of [y1, . . . , yt] ∈ Pt−1 would be zero,
which is absurd. Hence, we can assume yt = xtr = 1. Putting xi := yi for 1 ≤ i < t,
xt+j−1 := xtj for 1 ≤ j < r, and xd := x0, we obtain a point (x1, . . . , xd) ∈ Ad which
defines coefficients x̃ij as above. By construction, we have x̃ij = xij for i = t and for
all j ∈ Ir. Now, it follows from the equations (3.5.2) with n = t and j < r that xij =
xtjy

aj
i = xt+j−1x

aj
i = x̃ij for all i with 1 ≤ i < t. Similarly, using the equations (3.5.2)

with n = t and j = r, we get xir = xtry
ar
i = xar

i = x̃ir for all i with 1 ≤ i < t. This
proves that the image of (x1, . . . , xd) under (3.5.7) equals P , and completes the proof of the
lemma.



64
3.5. COUNTING RATIONAL POINTS ON HIRZEBRUCH–KLEINSCHMIDT

VARIETIES

3.5.3 Height zeta functions

The height zeta function over the good open subset U := Ud(a1, . . . , ar) is given by

ζU,L(s) :=
∑

x∈U(K)

HL(x)
−s.

We also introduce the formal power series

ZU,L(T ) =
∑

(xi)∈Ad

TdL(xi), (3.5.8)

where

dL(xi) := γ deg
(

sup
i∈It−1
j∈Ir−1

((xd)∞, (xt−1+j)∞ + aj(xi)∞, ar(xi)∞)
)
+ ξ deg

(
sup
i∈It−1

((xi)∞)
)
.

As in the case of the Dedekind zeta function of the base field K, we have the following
relation between the above series.

Lemma 95. With the above notation, we have the following equality

ζU,L(s) = ZU,L(q
−s)

as formal series.

Proof. Let x = (xi) ∈ Ad and denote by Px the image of x in U under the map defined in
Lemma 94. Then, we have

HL(Px) =
∏
v

sup
i∈It−1
j∈Ir−1

{
|xd|v, |xt−1+jx

aj
i |v, |xt−1+j|v, |xar

i |v, 1
}γ∏

v

sup
i∈It−1

{|xi|v, 1}ξ

=
∏
v

inf i∈It−1
j∈Ir−1

{v(xd),v(xt−1+jx
aj
i ),v(xt−1+j),v(x

ar
i )}<0

q
−fvγ inf i∈It−1

j∈Ir−1

{v(xd),v(xt−1+jx
aj
i ),v(xt−1+j),v(x

ar
i )}

×
∏
v

infi∈It−1
{v(xi)}<0

q−fvξ infi∈Ii−1
{v(xi)},

where each product runs over all v ∈ Val(K). By taking logq on both sides, we obtain
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logq HL(Px)

=
∑
v

inf i∈It−1
j∈Ir−1

{v(xd),v(xt−1+jx
aj
i ),v(xt−1+j),v(x

ar
i )}<0

−fvγ inf
i∈It−1
j∈Ir−1

{
v(xd), v(xt−1+jx

aj
i ), v(xt−1+j), v(x

ar
i )
}

+
∑
v

infi∈It−1
{v(xi)}<0

−fvξ inf
i∈It−1

{v(xi)}

= γ deg

 sup
i∈It−1
j∈Ir−1

(
(xd)∞, (xt−1+jx

aj
i )∞, (xt−1+j)∞, ar(xi)∞

)+ ξ deg

(
sup
i∈It−1

((xi)∞)

)
.

Since aj(xi)∞ ≤ ar(xi)∞, we can add ai(xi)∞ to each set in the first sum, and use Lemma 93
to get

logq HL(Px)

= γ deg

 sup
i∈It−1
j∈Ir−1

((xd)∞, (xt−1+j)∞ + aj(xi)∞, ar(xi)∞)

+ ξ deg

(
sup
i∈It−1

((xi)∞)

)
= dL(xi).

It follows that HL(Px)
−s = q−sdL(xi), hence

ζU,L(s) =
∑
x∈Ad

HL(Px)
−s =

∑
(xi)∈Ad

q−sdL(xi) = ZU,L(q
−s)

by Lemma 94. This completes the proof of the lemma.

Analogous to Bourqui in [6], we define the following counting functions Div+(K) → Z
by

R̃L(D) :=#
{
(xi) ∈ Ad : dL(xi) = D

}
,

RL(D) :=#
{
(xi) ∈ Ad : dL(xi) ≤ D

}
.

Remark 96. Note that RL(D) =
∑

0≤D′≤D R̃L(D
′), so (RL, R̃L) form a µ-couple.

It follows from the definition of ZU,L(T ) in (3.5.8) that

ZU,L(T ) =
∑
D≥0

R̃L(D)T deg(D).

The following result is crucial for the study of the series ZU,L(s), as it allows us to relate
this series to the series that defines the Dedekind zeta function of the field K.
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Lemma 97. The following relation holds

ZU,L(T ) =

(∑
D≥0

RL(D)T deg(D)

)
1

ZK(T )
.

Proof. Since (RL, R̃L) is a µ-couple, using Lemma 89 , we have

ZU,L(T ) =
∑
D≥0

R̃L(D)T deg(D) =
∑
D≥0

∑
0≤D′≤D

µ(D −D′)RL(D
′)T deg(D)

=
∑
D≥0

∑
D′≥0

µ(D)RL(D
′)T deg(D+D′) =

(∑
D≥0

RL(D)T deg(D)

)(∑
D′≥0

µ(D)T deg(D′)

)

=

(∑
D≥0

RL(D)T deg(D)

)
1

ZK(T )
,

where in the last equality we used Lemma 91. This proves the desired identity.

Associated to L = γh+ ξf ∈ Pic(X) big, we define

AL :=
r + 1

γ
, BL :=

(r + 1)ar − |a|+ t

γar + ξ
. (3.5.9)

Note that by Proposition 30 we have

a(L) = max{AL, BL} and b(L) =

{
2 if AL = BL,
1 if AL ̸= BL.

(3.5.10)

We now present the main result of this section, which describes the analytical properties
of the function ζU,L(s).

Theorem 98. Let X := Xd(a1, . . . , ar) be a Hirzebruch–Kleinschmidt variety over the
global function field K = Fq(C ) with ar > 0. Moreover, let U := Ud(a1, . . . , ar) be the
good open subset of X , let L = γh + ξf be a big line bundle class in Pic(Xd(a1, . . . , ar)),
and let ζU,L(s) be the associated height zeta function. Then, ζU,L(s) is a rational function
in q−s. Moreover, ζU,L(s) converges absolutely for ℜ(s) > a(L) and it has a pole of or-
der b(L) at s = a(L) with

lim
s→a(L)

(s− a(L))b(L)ζU,L(s) =



q(d+2)(1−g)h2
K

ζK(t)ζK(r+1)(γar+ξ)γ(q−1)2 log(q)2
if ξ =

(
t−|a|
r+1

)
γ,

q(d+2−NX )(1−g)hKRK(1−NX ,γBL−r+NX−1)
ζK(t)ζK(γBL)(γar+ξ)(q−1) log(q)

if ξ <
(

t−|a|
r+1

)
γ,

q(r+1)(1−g)hKRK(1−t,ALξ+|a|)
ζK(ALξ+|a|)ζK(r+1)γ(q−1) log(q)

if ξ >
(

t−|a|
r+1

)
γ,

where NX := #{j ∈ {1, . . . , r} : aj = ar} and

RK(a, b) :=
∑
D≥0

q−(aℓ(D)+b deg(D)) for a, b ∈ C with ℜ(a+ b) > 1.
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Remark 99. 1. The Riemann–Roch theorem (see Section 3.2) implies that

RK(a, b) =
∑
D≥0

deg(D)≤2g−2

q−(aℓ(D)+b deg(D)) + qa(g−1)
∑
D≥0

deg(D)>2g−2

q−(a+b) deg(D), (3.5.11)

hence RK(a, b) = qa(g−1)ζK(a+ b) + SK(a, b) with the finite sum

SK(a, b) :=
∑
D≥0

deg(D)≤2g−2

(q−(aℓ(D)+b deg(D)) − qa(g−1)−(a+b) deg(D)).

In particular, RK(a, b) = q−aζK(a+ b) if g = 0.

2. As in the case of Hirzebruch–Kleinschmidt varieties over number fields (see [16, Re-
mark 6.8]), the different cases that appear in Theorem 98 give a subdivision of the big
cone of X , i.e. the interior of Λeff(X) (see Figure 3.1 for an illustration, where we
assume t > |a| for simplicity). It follows from Theorem 98 that the line bundles L
contained in the ray passing through the anticanonical class have height zeta functions
with a double pole at s = AL = BL, while line bundles outside this ray have height
zeta functions with a simple pole at s = max{AL, BL}.

ξ

γ

−KX

ξ =
t−|a|
r+1

γ

ξ <
t−|a|
r+1

γ

ξ >
t−|a|
r+1

γ

Figure 3.1: Subdivision of the big cone of X . The heights that come from line bundles
contained in the ray passing through the anticanonical bundle induce height zeta functions
having a double pole at s = r+1

γ
.

Proof. For the sake of the reader’s convenience, we divide the proof into four independent
steps.

Step 1. Rewriting the function RL(D). For positive integers n,m and D ∈ Div+(K), we
define

Nn
m(D) := #

{
(xi) ∈ Am : n sup

i∈Im
(xi)∞ ≤ D

}
,
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and

Ñm(D) := #

{
(xi) ∈ Am : sup

i∈Im
(xi)∞ = D

}
.

Note that (N1
m, Ñm) forms a µ-couple and N1

m(D) = (N1
1 (D))m = qmℓ(D) (see Section 3.2).

For each integer c ≥ 1, we also define the set

Divc := {D ∈ Div+(K) : v(D) ≤ c for all v ∈ Val(K)},

and note that by the division algorithm all divisor D ≥ 0 can be written uniquely as D =
(c+ 1)D1 +D2, where D1 ≥ 0 and D2 ∈ Divc. Observe also that

N c+1
1 ((c+ 1)D1 +D2) = N1

1 (D1) for all D1 ≥ 0, D2 ∈ Divc . (3.5.12)

In particular, choosing c = cL − 1 where

cL := γar + ξ,

we have that every D ≥ 0 may be written uniquely as

D = cLD1 +D2, with D1 ≥ 0, D2 ∈ DivcL−1, (3.5.13)

and for every D′ ≥ 0, we have

cLD
′ ≤ D ⇔ D′ ≤ D1. (3.5.14)

Now, recalling that d = r+ t− 1, it follows from the definition of RL(D) and dL(x) that

RL(D) = #

(xi) ∈ Ad : γ sup
i∈It−1
j∈Ir−1

(
(xd)∞, (xt−1+j)∞ + aj(xi)∞, ar(xi)∞

)
+ ξ sup

i∈It−1

(
(xi)∞

)
≤ D


=
∑
0≤D′

Ñt−1(D
′)#
{
(xi) ∈ Ar : γ sup

j∈Ir−1

((xr)∞, (xj)∞ + ajD
′, arD

′) + ξD′ ≤ D
}
.

Since
cLD

′ ≤ γ sup
j∈Ir−1

((xr)∞, (xj)∞ + ajD
′, arD

′) + ξD′,

writing D as in (3.5.13) we get (using (3.5.14))

RL(D) =
∑

0≤D′≤D1

Ñt−1(D
′)#
{
(xi) ∈ Ar : γ sup

j∈Ir−1

((xr)∞, (xj)∞ + ajD
′, arD

′) + ξD′ ≤ D
}
.

Furthermore, using (3.5.14) we see that for D′ satisfying 0 ≤ D′ ≤ D1, the condition

γ sup
j∈Ir−1

((xr)∞, (xj)∞ + ajD
′, arD

′) + ξD′ ≤ D,

is equivalent to the system of inequalities{
γ(xr)∞ ≤ D − ξD′,
γ(xj)∞ ≤ D − (ξ + γaj)D

′, for all j ∈ Ir−1.
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Therefore, we obtain

RL(D) =
∑

0≤D′≤D1

Ñt−1(D
′)Nγ

1 (D − ξD′)
r−1∏
j=1

Nγ
1 (D − (ξ + γaj)D

′) .

Putting a0 := 0, we rewrite this identity as

RL(D) =
∑

0≤D′≤D1

Ñt−1(D
′)

r−1∏
j=0

Nγ
1 (D − (ξ + γaj)D

′) . (3.5.15)

Step 2. Analysis of the formal series
∑

D≥0RL(D)T deg(D). Let us define

Z1(T ) :=
∑
D≥0

RL(D)T deg(D).

Using (3.5.13) we have

Z1(T ) =
∑

D1≥0,D2∈DivcL−1

RL (cLD1 +D2)T
deg(cLD1+D2).

Fixing now D1 ≥ 0, D2 ∈ DivcL−1 and using (3.5.15) we have

RL (cLD1 +D2)T
deg(cLD1+D2)

=
∑

0≤D′≤D1

Ñt−1(D
′)

r−1∏
j=0

Nγ
1 (cLD1 +D2 − (ξ + γaj)D

′)T deg(cLD1+D2)

=
∑

0≤D′≤D1

Ñt−1(D
′)

r−1∏
j=0

Nγ
1 (cL(D1 −D′) +D2 + γ(ar − aj)D

′)T deg(cL(D1−D′)+D2+cLD
′).

Writing D1 −D′ = D′′ with D′′ ≥ 0 we get (using (3.5.12))

Z1(T ) =
∑

D′≥0,D′′≥0
D2∈DivcL−1

Ñt−1(D
′)

r−1∏
j=0

Nγ
1 (cLD

′′ +D2 + γ(ar − aj)D
′)T deg(cLD

′′+D2+cLD
′)

=
∑

D≥0,D′≥0

Ñt−1(D
′)

r−1∏
j=0

Nγ
1 (D + γ(ar − aj)D

′)T deg(D+cLD
′)

=
∑

D≥0,D′≥0
D1∈Divγ−1

Ñt−1(D
′)

r−1∏
j=0

Nγ
1 (γD +D1 + γ(ar − aj)D

′)T deg(γD+D1+cLD
′)

=
∑

D≥0,D′≥0
D1∈Divγ−1

Ñt−1(D
′)

r−1∏
j=0

N1
1 (D + (ar − aj)D

′)T deg(γD+D1+cLD
′).
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Recall that NX = #{j ∈ {1, . . . , r} : aj = ar} and note that j = r − NX is the largest
non-negative index satisfying aj < ar. Hence, we have

Z1(T ) =
∑

D≥0,D′≥0
D1∈Divγ−1

Ñt−1(D
′)N1

1 (D)NX−1

r−NX∏
j=0

N1
1 (D + (ar − aj)D

′)T deg(γD+D1+cLD
′).

Now, define

Z2(T ) :=
∑

D≥0,D′≥0
D1∈Divγ−1

Ñt−1(D
′)N1

1 (D)NX−1

r−NX∏
j=0

q1−gqdeg(D)+(ar−aj) deg(D
′)T deg(γD+D1+cLD

′).

Putting A := min{ar − aj : j ∈ {0, . . . , r−NX}} = ar − ar−NX
, we note by the Riemann–

Roch theorem (see Section 2.1) that

N1
1 (D + (ar − aj)D

′) = q1−gqdeg(D)+(ar−aj) deg(D
′) for all j ∈ {0, . . . , r −NX},

provided deg(D + AD′) > 2g − 2. This implies

Z1(T )− Z2(T ) =
∑

D≥0,D′≥0
deg(D)+Adeg(D′)≤2g−2

D1∈Divγ−1

Ñt−1(D
′)N1

1 (D)NX−1

(
r−NX∏
j=0

N1
1 (D + (ar − aj)D

′)

−q(r+1−NX)(1−g)

r−NX∏
j=0

qdeg(D)+(ar−aj) deg(D
′)

)
T deg(γD+D1+cLD

′)

= P1(T )
∑

D1∈Divγ−1

T deg(D1), (3.5.16)

where P1(T ) ∈ Q[T ], since A > 0 and there are only finitely many pairs of divisors D ≥
0, D′ ≥ 0 satisfying deg(D + AD′) ≤ 2g − 2. Next, we further compute

Z2(T ) =q(r+1−NX)(1−g)

(∑
D′≥0

Ñt−1(D
′)q((r+1)ar−|a|) deg(D′)T cL deg(D′)

)

×

(∑
D≥0

N1
1 (D)NX−1

(
qr+1−NXT γ

)deg(D)

) ∑
D1∈Divγ−1

T deg(D1)

 .
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Putting

Z3(T ) :=q(r+1−NX)(1−g)

(∑
D′≥0

Ñt−1(D
′)q((r+1)ar−|a|) deg(D′)T cL deg(D′)

)

×

(∑
D≥0

(
q1−g+deg(D)

)NX−1 (
qr+1−NXT γ

)deg(D)

) ∑
D1∈Divγ−1

T deg(D1)


=qr(1−g)

(∑
D′≥0

Ñt−1(D
′)q((r+1)ar−|a|) deg(D′)T cL deg(D′)

)

×

(∑
D≥0

(qrT γ)deg(D)

) ∑
D1∈Divγ−1

T deg(D1)



we have, using the Riemann–Roch theorem once more, that

Z2(T )− Z3(T ) =q(r+1−NX)(1−g)

(∑
D′≥0

Ñt−1(D
′)q((r+1)ar−|a|) deg(D′)T cL deg(D′)

)

× P2(T )

 ∑
D1∈Divγ−1

T deg(D1)

 ,

(3.5.17)

with

P2(T ) :=
∑
D≥0

deg(D)≤2g−2

(
N1

1 (D)NX−1 −
(
q1−g+deg(D)

)NX−1
) (

qr+1−NXT γ
)deg(D) ∈ Q[T ].

Step 3. Rewriting the formal series Z3(T ). Taking into account that (N1
t−1, Ñt−1) is a

µ-couple, and using Lemma 97, we have∑
D′≥0

Ñt−1(D
′)q((r+1)ar−|a|) deg(D′)T cL deg(D′)

=
∑
D≥0

∑
0≤D′≤D

µ(D −D′)N1
t−1(D

′)q((r+1)ar−|a|) deg(D)T cL deg(D)

=
∑
D≥0

∑
D′≥0

µ(D)N1
t−1(D

′)q((r+1)ar−|a|) deg(D+D′)+T cL deg(D+D′)

=

(∑
D′≥0

N1
1 (D

′)t−1q((r+1)ar−|a|) deg(D′)T cL deg(D′)

)(∑
D≥0

µ(D)q((r+1)ar−|a|) deg(D)T cL deg(D)

)

=

(∑
D′≥0

N1
1 (D

′)t−1q((r+1)ar−|a|) deg(D′)T cL deg(D′)

)
1

ZK (q(r+1)ar−|a|T cL)
.
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Using again the Riemann–Roch theorem, we obtain∑
D′≥0

Ñt−1(D
′)q((r+1)ar−|a|) deg(D′)T cL deg(D′)

=

(∑
D′≥0

q(t−1)(1−g)q(t−1) deg(D′)q((r+1)ar−|a|) deg(D′)T cL deg(D′) + P3(T )

)
1

ZK (q(r+1)ar−|a|T cL)

=
(
q(t−1)(1−g) ZK

(
q(r+1)ar−|a|+t−1T cL

)
+ P3(T )

) 1

ZK (q(r+1)ar−|a|T cL)
,

where

P3(T ) :=
∑
D′≥0

deg(D′)≤2g−2

(
N1

1 (D
′)t−1 − q(t−1)(1−g+deg(D′))

)
q((r+1)ar−|a|) deg(D′)T cL deg(D′) ∈ Q[T ].

We conclude

Z3(T ) =
(
q(t−1)(1−g) ZK

(
q(r+1)ar−|a|+t−1T cL

)
+ P3(T )

)
× qr(1−g) ZK (qrT γ)

ZK (q(r+1)ar−|a|T cL)

 ∑
D1∈Divγ−1

T deg(D1)

 .
(3.5.18)

Note that, by (3.5.17), we also get

Z2(T )− Z3(T ) =q(r+1−NX)(1−g)
(
q(t−1)(1−g) ZK

(
q(r+1)ar−|a|+t−1T cL

)
+ P3(T )

)
× P2(T )

ZK (q(r+1)ar−|a|T cL)

 ∑
D1∈Divγ−1

T deg(D1)

 .
(3.5.19)

Step 4. Analytic behaviour of ζU,D(s). Since all D ≥ 0 can be written as D = γD1 +D2,
with D1 ≥ 0 and D2 ∈ Divγ−1, we have

ZK(T ) =

(∑
D≥0

T γ deg(D)

) ∑
D∈Divγ−1

T deg(D)

 .

This implies ∑
D∈Divγ−1

T deg(D) =
ZK(T )

ZK(T γ)
,

and by Lemma 97 together with (3.5.16) we get

ZU,L(T ) =
Z1(T )

ZK(T )
=

Z2(T )

ZK(T )
+

P1(T )

ZK(T γ)
.

Then, using (3.5.19) we have

ZU,L(T ) =
Z3(T )

ZK(T )
+

q(d+1−NX)(1−g)P2(T ) ZK

(
q(r+1)ar−|a|+t−1T cL

)
ZK (q(r+1)ar−|a|T cL) ZK(T γ)

+
q(r+1−NX)(1−g)P3(T )P2(T )

ZK (q(r+1)ar−|a|T cL) ZK(T γ)
+

P1(T )

ZK(T γ)
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Finally, using (3.5.18) we get

ZU,L(T ) =
qd(1−g) ZK

(
q(r+1)ar−|a|+t−1T cL

)
ZK (qrT γ)

ZK (q(r+1)ar−|a|T cL) ZK(T γ)
+

qr(1−g)P3(T ) ZK (qrT γ)

ZK (q(r+1)ar−|a|T cL) ZK(T γ)

+
q(d+1−NX)(1−g)P2(T ) ZK

(
q(r+1)ar−|a|+t−1T cL

)
ZK (q(r+1)ar−|a|T cL) ZK(T γ)

+
q(r+1−NX)(1−g)P3(T )P2(T )

ZK (q(r+1)ar−|a|T cL) ZK(T γ)

+
P1(T )

ZK(T γ)
.

By Lemma 95 we conclude

ζU,L(s) =
qd(1−g)ζK ((γar + ξ) s− ((r + 1)ar − |a|+ t− 1)) ζK(γs− r)

ζK ((γar + ξ) s− ((r + 1)ar − |a|)) ζK(γs)

+
qr(1−g)P3(q

−s)ζK(γs− r)

ζK ((γar + ξ) s− ((r + 1)ar − |a|)) ζK(γs)

+
q(d+1−NX)(1−g)P2(q

−s)ζK ((γar + ξ) s− ((r + 1)ar − |a|+ t− 1))

ζK ((γar + ξ) s− ((r + 1)ar − |a|)) ζK(γs)

+
q(r+1−NX)(1−g)P3(q

−s)P2(q
−s)

ζK ((γar + ξ) s− ((r + 1)ar − |a|)) ζK(γs)
+

P1(q
−s)

ζK(γs)
.

It follows from the properties of the zeta function ζK(s) (see Section 3.2) that ζU,L(s) is
a rational function in q−s. Moreover, using Corollary 92 and (2.10.4) we see that ζU,L(s)
converges absolutely for

ℜ(s) > max{AL, BL} = a(L),

with AL, BL defined in (3.5.9). Finally, recalling that r ≥ 1, t ≥ 2, we get the following
properties:

1. If AL = BL, then ζU,L(s) has a pole of order 2 at s = a(L) with

lim
s→a(L)

(s− a(L))2ζU,L(s) =
qd(1−g)

ζK(t)ζK(r + 1)

(
Ress=1ζK(s)

)2
(γ + arξ)γ

=
q(d+2)(1−g)h2

K

ζK(t)ζK(r + 1)(γ + arξ)γ(q − 1)2 log(q)2
.

2. If AL < BL, then ζU,L(s) satisfies

lim
s→a(L)

(s− a(L))ζU,L(s) =
(
qd(1−g)ζK(γBL − r) + q(d+1−NX)(1−g)P2(q

−BL)
)

× Ress=1ζK(s)

ζK (t) ζK(γBL)(γar + ξ)

=
(
qd(1−g)ζK(γBL − r) + q(d+1−NX)(1−g)P2(q

−BL)
)

× hKq
1−g

ζK (t) ζK(γBL)(γar + ξ)(q − 1) log(q)
.
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From the definition of P2(T ) and (3.5.11) we have

qd(1−g)ζK(γBL − r) + q(d+1−NX)(1−g)P2(q
−BL)

=q(d+1−NX)(1−g)
∑
D≥0

deg(D)≤2g−2

q(NX−1)ℓ(D)+(r+1−NX−γBL) deg(D) + qd(1−g)
∑
D≥0

deg(D)>2g−2

q−(γBL−r) deg(D)

=q(d+1−NX)(1−g)RK(1−NX , γBL − r +NX − 1).

Since this value is positive, we conclude that ζU,L(s) has a simple pole at s = a(L) in
this case.

3. If AL > BL, then ζU,L(s) satisfies

lim
s→a(L)

(s− a(L))ζU,L(s) =
(
qd(1−g)ζK ((γar + ξ)AL − ((r + 1)ar − |a|+ t− 1)) + qr(1−g)P3(q

−AL)
)

× Ress=1ζK(s)

ζK ((γar + ξ)AL − ((r + 1)ar − |a|)) ζK(r + 1)γ

=
(
qd(1−g)ζK (ALξ + |a| − t+ 1) + qr(1−g)P3(q

−AL)
)

× hKq
1−g

ζK (ALξ + |a|) ζK(r + 1)γ(q − 1) log(q)
.

Using the definition of P3(T ) and (3.5.11), we get

qd(1−g)ζK (ALξ + |a| − t+ 1) + qr(1−g)P3(q
−AL)

=qr(1−g)
∑
D≥0

deg(D)≤2g−2

qℓ(D)(t−1)−deg(D)(ALξ+|a|) + qd(1−g)
∑
D≥0

deg(D)>2g−2

q−(ALξ+|a|−t+1) deg(D)

=qr(1−g)RK (1− t, ALξ + |a|) .

As in the previous case, we conclude that ζU,L(s) has a simple pole at s = a(L).

Since the condition AL = BL (resp. AL < BL, AL > BL) is equivalent to ξ =
(

t−|a|
r+1

)
γ

(resp. ξ <
(

t−|a|
r+1

)
γ, ξ >

(
t−|a|
r+1

)
γ), the desired result follows from the properties stated

above. This completes the proof of the theorem.

The much simpler case when ar = 0 is given by the following theorem, where we see that
there is no need to remove a closed subvariety of X = Xd(a1, . . . , ar) and we can directly
give the analytic properties of the height zeta function

ζX,L(s) :=
∑

P∈X(K)

HL(P )−s.

Note that, in this case, we have

AL =
r + 1

γ
, BL =

t

ξ
.
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Theorem 100. Let X ≃ Pr × Pt−1 be a Hirzebruch–Kleinschmidt variety over the global
function field K = Fq(C ) with ar = 0 and let L = γh + ξf ∈ Pic(X) big. Then, the height
zeta function ζX,L(s) is a rational function in q−s. Moreover, ζX,L(s) converges absolutely
for ℜ(s) > a(L) and it has a pole of order b(L) at s = a(L) with

lim
s→a(L)

(s− a(L))b(L)ζX,L(s) =


q(d+2)(1−g)h2

K

ζK(t)ζK(r+1)γξ(q−1)2 log(q)2
if ξ =

(
t

r+1

)
γ,

ζPr (γBL)hKqt(1−g)

ζK(t)ξ(q−1) log(q)
if ξ <

(
t

r+1

)
γ,

ζPt−1 (ξAL)hKq(r+1)(1−g)

γζK(r+1)(q−1) log(q)
if ξ >

(
t

r+1

)
γ.

Proof. By (3.5.1) we have
ζX,L(s) = ζPr(γs)ζPt−1(ξs).

Then, using Theorem 84, we see that ζX,L(s) is a rational function in q−s and it converges
absolutely on ℜ(s) > max{AL, BL} = a(L). Moreover, we have the following properties:

1. If AL = BL, then ζX,L(s) has a double pole at s = a(L) with

lim
s→a(L)

(s− a(L))2ζX,L(s) =
Ress=r+1 ζPr(s) Ress=t ζPt−1(s)

γξ

=
h2
Kq

(d+2)(1−g)

γξζK(r + 1)ζK(t)(q − 1)2 log(q)2
.

2. If AL < BL, then ζX,L(s) has a simple pole at s = a(L) with

lim
s→a(L)

(s− a(L))ζX,L(s) =
ζPr(γBL) Ress=t ζPt−1(s)

ξ

=
ζPr(γBL)hKq

t(1−g)

ξζK(t)(q − 1) log(q)
.

3. If AL > BL, then ζX,L(s) has a simple pole at s = a(L) with

lim
s→a(L)

(s− a(L))ζX,L(s) =
Ress=r+1 ζPr(s)ζPt−1(ξAL)

γ

=
ζPt−1(ξAL)hKq

(r+1)(1−g)

γζK(r + 1)(q − 1) log(q)
.

These cases correspond exactly to ξ equal, less than, or greater than
(

t
r+1

)
, respectively. This

proves the theorem.

3.5.4 The anticanonical height

We now prove Theorem 7 from the Introduction. We choose L = −KX = γf + ξf
with γ = r+1 and ξ = t− |a|. Hence, AL = BL = 1, a(L) = 1 and b(L) = 2. The absolute
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convergence of ζU,−KX
(s) on ℜ(s) > 1 and the fact ζU,−KX

(s) is a rational function on q−s

follows directly from Theorems 98 and 100. Now, assuming ar > 0, we get by Theorem 98
the equality

lim
s→1

(s− 1)2ζU,−KX
(s) = C

with C given by (0.0.5). This proves the result in the case ar > 0. Assume ar = 0. Then,
Theorem 100 gives

lim
s→1

(s− 1)2ζX,−KX
(s) = C

with the same C as before. Now, by Lemma 87 we have

X \ U ≃


Xd−1(a1, . . . , ar) ⊔ (Pr

1 \ {P0}) ⊔
(⊔

2≤t′<t Ut′+r−1(a1, . . . , ar)

)
if r > 1,

Pt−1
2 ⊔ (P1

1 \ {P0}) ⊔
(⊔

2≤t′<t Ut′+r−1(a1)

)
if r = 1,

with Xd−1(a1, . . . , ar) ≃ Pt−1×Pr−1 in the case r > 1. Using Theorems 100 and 84, we see
that

ζX\U,−KX
(s) :=

∑
P∈X(K)\U(K)

H(P )−s

has a simple pole at s = 1. We conclude that

lim
s→1

(s− 1)2ζU,−KX
(s) = lim

s→1
(s− 1)2ζX,−KX

(s) = C.

This completes the proof of Theorem 7.

3.5.5 Example: Hirzebruch surfaces

Given a > 0 let X := X1(a) be a Hirzebruch surface and L = γh + ξf ∈ Pic(X) big.
By Lemma 87 we have

X ≃ P1 ⊔ A1 ⊔ U1(a), (3.5.20)

with associated height zeta functions ζP1(ξs), ζA1(γs) = ζP1(γs)− 1 and ζU,L(s) where U :=
U1(a). In this case we have

AL =
2

γ
, BL =

a+ 2

γa+ ξ
,

and the analytic properties of ζU,L(s) are given in Theorem 98. In particular, it converges
absolutely in ℜ(s) > max{AL, BL}, is has a pole at s = max{AL, BL}, and this pole is of
order two if AL = BL, and of order one otherwise. For the zeta function ζA1(γs), we see
that it converges absolutely in ℜ(s) > AL, it has a pole at s = AL, and this is a simple pole.
Finally, the zeta function ζP1(ξs) has no finite abscissa of absolute convergence if ξ ≤ 0, and
it converges absolutely in ℜ(s) > 2

ξ
with a simple pole at s = 2

ξ
if ξ > 0. This allows for a

complete analysis of the contribution of each component in (3.5.20) to the number of rational
points of bounded height HL in X .

In order to illustrate this, we choose a = 1 for simplicity. In the following table we
denote by σ1, σ2 and σ3 the abscissas of absolute convergence of ζP1(ξs), ζA1(γs) and ζU,L(s),
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respectively, for the first possible choices of γ > 0 and µ > −aγ (so that L is big). We also
record the order b(L) of the pole of ζU,L(s) at s = σ3.

γ ξ σ1 σ2 σ3 b(L)
1 0 ∞ 2 3 1
1 1 2 2 2 1
1 2 1 2 2 1
2 −1 ∞ 1 3 1
2 0 ∞ 1 3/2 1
2 1 2 1 1 2
3 −2 ∞ 2/3 3 1
3 −1 ∞ 2/3 3/2 1
3 0 ∞ 2/3 1 1
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des variétés algébriques”. In: Math. Ann. 286.1-3 (1990), pp. 27–43. ISSN: 0025-5831.
DOI: 10.1007/BF01453564. URL: https://doi-org.usm.idm.oclc.
org/10.1007/BF01453564.

[3] Victor V. Batyrev and Yuri Tschinkel. “Rational points on some Fano cubic bundles”.
In: C. R. Acad. Sci. Paris Sér. I Math. 323.1 (1996), pp. 41–46. ISSN: 0764-4442.

[4] Victor V. Batyrev and Yuri Tschinkel. “Tamagawa numbers of polarized algebraic va-
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