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Matemática
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Resumen

Esta tesis explora aspectos fundamentales y contemporáneos de la geometŕıa algebraica,

con un enfoque particular en las variedades de Fano y la noción de K-estabilidad. El

trabajo se estructura en torno a la filosof́ıa del Programa de Modelos Minimales (MMP),

cuyo objetivo es clasificar variedades algebraicas seleccionando representantes canónicos

dentro de cada clase de equivalencia birracional. El Caṕıtulo I introduce los resultados

fundamentales del MMP, enfatizando las generalizaciones en dimensiones superiores del

Teorema del Cono de Mori y el rol de las singularidades en el programa.

El Caṕıtulo II se centra en las variedades de Fano, presentando sus propiedades gen-

erales, la técnica del ∆-género de T. Fujita y la geometŕıa birracional de familias

espećıficas de variedades 4-dimensionales, como las variedades de del Pezzo. Estas

discusiones destacan cómo los invariantes numéricos pueden contribuir a clasificar las

variedades de Fano y analizar sus estructuras geométricas.

El Caṕıtulo III ofrece una introducción a la K-estabilidad, un concepto utilizado para

determinar la existencia de métricas de Kähler-Einstein en variedades algebraicas, con

un énfasis particular en las variedades de Fano. Cubre avances teóricos y criterios

numéricos prácticos, incluyendo v́ınculos recientes entre la K-estabilidad y el MMP.

Se discuten invariantes computables, como α y δ, junto con ejemplos que ilustran sus

aplicaciones.

Finalmente, el Caṕıtulo IV se enfoca en un trabajo en progreso sobre la K-estabilidad de

las variedades de Fano-Mukai 4-dimensionales de género 9, extendiendo la clasificación

de variedades K-estables a dimensiones superiores. A través de cálculos expĺıcitos y

conexiones con otras variedades, este caṕıtulo proporciona evidencia inicial que respalda

la K-estabilidad de estas 4-variedades y examina sus grupos de automorfismos.
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Abstract

This thesis explores foundational and contemporary aspects of algebraic geometry, with

a particular focus on Fano varieties and the notion of K-stability. The work is structured

around the philosophy of the Minimal Model Program (MMP), which aims to classify

algebraic varieties by selecting canonical representatives within each birational equiv-

alence class. Chapter I introduces the foundational results of MMP, emphasizing the

higher-dimensional generalizations of Mori’s Cone Theorem and the role of singularities

in the program.

Chapter II centers on Fano varieties, presenting their general properties, T. Fujita’s

∆-genus technique, and the birational geometry of specific families of fourfolds, such

as del Pezzo varieties. These discussions highlight how numerical invariants can aid in

classifying Fano varieties and analyzing their geometric structures.

Chapter III provides an introduction to K-stability, a concept used to determine the

existence of Kähler-Einstein metrics on algebraic varieties, with a particular emphasis

on Fano varieties. It covers theoretical advancements and practical numerical criteria,

including recent links between K-stability and the MMP. Computable invariants, such

as α and δ, are discussed alongside examples illustrating their applications.

Finally, Chapter IV focuses on a work in progress concerning the K-stability of Fano-

Mukai fourfolds of genus 9, extending the classification of K-stable varieties to higher

dimensions. Through explicit computations and connections to other varieties, this

chapter provides initial evidence supporting the K-stability of these fourfolds and ex-

amines their automorphism groups.
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Introduction

Algebraic geometry, often described as the study of solutions to polynomial equations,

has among its primary goals the classification of all projective varieties X ⊂ Pn over C
up to isomorphism. A common approach to tackle this classification problem can be

outlined as follows:

1. Classify varieties up to birational equivalence.

2. Identify suitable “canonical” representatives within each birational equivalence

class.

3. Study how these canonical models relate to one another and to what extent an

arbitrary variety deviates from these representatives.

This philosophy, known as the Mori Program, has proven highly effective in the study

of complex algebraic surfaces, leading to the celebrated Enriques-Kodaira Classifica-

tion. In simple words, the Minimal Model Program (MMP) in dimension 2 operates

as an algorithm that iteratively contracts specific curves, ultimately yielding one of

two outcomes: either a unique minimal surface or a ruled surface (where uniqueness

is not guaranteed). These foundational ideas culminated in an elegant and complete

classification of surfaces, details of which can be found in [Bea83].

Chapter I of this work is devoted to foundational aspects of the Mori Theory/MMP, now

regarded as a cornerstone of modern geometry. It aims to present the philosophy that S.

Mori employed to generalize the MMP from surfaces to higher dimensions, along with

the key results that underpin this extension. In this context, Mori’s celebrated Cone

Theorem (presented in [Mor82]) laid the groundwork for the higher-dimensional MMP.

The concept of (−1)-curves from the theory of surfaces transitions in higher dimensions

to the notion of extremal contractions, and Mori demonstrated both their existence and

uniqueness, and that these contractions serve to “hide” KX-negative curves.
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Sections I.1, I.2, and I.3 largely follow O. Debarre’s book [Deb01], as well as his lecture

notes on Mori Theory, which provide a more concise treatment of the same material.

Additionally, these results are supported by key insights from [KM98, Mat02]. §I.4,

which addresses the necessity of studying singularities to carry out the goals of the

Minimal Model Program, is primarily based on the classical reference [KM98]. Finally,

section §I.5, focusing on divisor volumes, draws heavily from [Laz04, LM09].

One of the principal families of varieties in algebraic geometry is that of Fano varieties,

i.e., varieties X such that −KX is an ample divisor. These varieties generalize, in

certain respects, specific complete intersections in projective space. Chapter II of this

thesis has the following objectives:

1. Discuss general properties of Fano varieties.

2. Provide a modern exposition of T. Fujita’s classical works on Fano varieties, fo-

cusing on the ∆-genus technique.

3. Present examples of Fano fourfolds and study their birational geometry in detail

using techniques from intersection theory.

Each section in Chapter II corresponds to one of these objectives. The primary reference

for this chapter is [IP99], with §II.1 following closely the exposition in §2.1 of this work.

Section §II.2 builds upon the foundational papers [Fuj75, Fuj77, Fuj80, Fuj81] by T.

Fujita, where he introduced the ∆-genus, a numerical invariant that enabled a clean

classification of certain varieties. Notably, these works provide characterizations of

Fano varieties with high index, including del Pezzo varieties. A comprehensive (though

occasionally less detailed) presentation of these results can also be found in [Fuj90, §I].

Finally, in §II.3, the birational geometry of del Pezzo varieties of degree 4 and 5 is

examined in depth, primarily following the works [PZ16, PZ17]. Additionally, various

intersection theory computations are presented to illustrate different techniques that

employ more advanced methods than those introduced in §I.2. Most of these techniques

are rooted in the classical reference [Ful84], while a more modern treatment can be found

in [EH16].

Chapter III aims to serve as an introduction to K-stability, a notion originally in-

troduced by G. Tian to detect the existence of certain metrics on algebraic varieties.

Its origins trace back to the Calabi problem, which concerns the existence of Kähler-

Einstein metrics on a differentiable manifold. More precisely, given a smooth projective

2
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variety X, the question is whether there exists a Kähler metric ω on X such that

Ric(ω) = λω for some λ ∈ {−1, 0, 1} (Kähler-Einstein Equation).

In terms of the trichotomy that dominates algebraic geometry (Calabi-Yau / canonically

polarized / Fano), classical results by Aubin and Yau in complex geometry demonstrate

that such metrics always exist in the first two cases. However, not every Fano variety

admits such a metric. The works of Chen-Donaldson-Sun (2012) and Tian (2015)

revealed that this phenomenon is intrinsically algebraic in nature, and the algebro-

geometric concept underlying this behavior is known as K-stability. Sections §III.2,

§III.3 aim to provide an initial approach to K-stability theory.

One of the main challenges of K-stability lies in its computational complexity: verifying

it requires examining an entire family of degenerations of a variety, rendering manual

verification impractical. This has spurred significant efforts to develop numerical criteria

for determining K-stability. Notable advancements in this direction include the works

[LX14, Fuj18, Fuj19b, Fuj19a, Li17, FO18, BHJ17, BJ20]. This is mainly discussed in

§III.5.

Moreover, one of the most remarkable discoveries of the last decade has been the close

connection between the Minimal Model Program and K-stability, primarily due to the

works of Yuji Odaka and Chenyang Xu. A brief overview of this relationship is presented

in §III.4, drawing mainly from [Oda13a, Oda12, OX12, Oda13b].

To conclude Chapter III, §III.6 addresses the numerical invariants α and δ, which pro-

vide computable criteria for K-stability. Notably, [AZ22] introduces a highly fruitful

technique in K-stability, a form of adjunction for the δ-invariant that reduces the di-

mensionality of the computations. Examples illustrating these techniques are provided

at the end of the chapter.

In general, the preparation of this chapter relied heavily on the lecture notes by Harold

Blum and Kristin DeVleming, as well as the book [ACC+23], which compiles much of

the theory developed in recent years.

I am grateful to Professor Giancarlo Urzúa for inviting me to participate in the “Al-

gebraic Geometry Seminar” organized at Pontificia Universidad Católica de Chile, as

well as to the seminar attendees. Chapter III originated as lecture notes for a series of

talks I co-presented with Professor Pedro Montero during this seminar. Undoubtedly,

participating in this seminar allowed me to gain valuable insights into the topic.

3



Chapter |

Chapter IV presents the initial steps of a work in progress aimed at studying the K-

stability properties of Fano-Mukai fourfolds of genus 9, characterized by S. Mukai. This

research is motivated by the ongoing exploration of K-stable Fano varieties. As detailed

in [ACC+23], the K-stability of the general members of all families of Fano 3-folds has

been established, making the next natural challenge the extension of these results to

dimension 4.

In Section IV.1, the K-stability of del Pezzo fourfolds is addressed. Building on the

works [ST24, AGP06, Fuj17, Liu22], this section concludes that the problem has already

been resolved.

Given this context, §IV.2 focuses on characterizing the Fano-Mukai fourfolds of genus

9 (denoted V16), with primary references [Muk89, IR05]. Additionally, this section

establishes a link between these varieties and del Pezzo fourfolds of degree 5, which

were extensively studied in §II.3.

Subsequently, §IV.3 calculates the beta invariant associated with the divisor on V16

arising from the link established in §IV.2. This serves as initial evidence for the K-

stability of these varieties. The methodology follows the ideas of [Fuj17], where it was

shown that del Pezzo fourfolds of degree 5 are not K-stable using the link discussed in

§II.3. The original computation presented corresponds to Proposition IV.3.6.

Finally, §IV.4 explores characterizations of the automorphism group of V16, with the

main source being [DM22]. In this section we prove that the action of Aut(V16) does

not have fixed points. The details are presented in Proposition IV.4.6.

To conclude, I would like to express my gratitude to Professor Adrien Dubouloz for

the opportunity to participate in the Workshop “K-stability, Geometry and Group

Actions”, organized at the University of Poitiers. This event provided me with the

valuable chance to present the content of Chapter IV of this work. I am also deeply

thankful to Professors Kento Fujita and Takashi Kishimoto, who attended the workshop

and kindly guided me on the posed problem, answering several questions I had along

the way.
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Chapter I

Mori theory

The classification of complex algebraic surfaces, with foundational contributions stem-

ming from the classical Italian school of algebraic geometry (notably through the works

of M. Noether, G. Castelnuovo, and F. Enriques), and later profoundly developed by K.

Kodaira, undoubtedly represents one of the most remarkable achievements in mathe-

matics of the past century. The central philosophy of this endeavor can be summarized

as follows:

1. classify varieties up to birational equivalence,

2. within each birational equivalence class, identify a model that is as simple as

possible,

3. and recognize that the geometry of a variety is fundamentally governed by its

canonical divisor.

The Minimal Model Program (MMP) for surfaces thus consists of an algorithm which,

starting with a smooth surface, proceeds by contracting specific curves. The process

yields one of two outcomes: either a unique minimal surface or a ruled surface, in which

case uniqueness is not guaranteed. These foundational ideas culminated in an elegant

and comprehensive classification of surfaces, which the interested reader may consult

in [Bea83].

Following these breakthroughs, one of the central problems in algebraic geometry

throughout the 20th century was the extension of this classification paradigm to higher

dimensions, the pursuit of what is now known as the Minimal Model Program in ar-

bitrary dimension. A key distinction between the surface case and higher-dimensional

5



Chapter I | Mori theory

settings lies in the increased complexity of the morphisms involved (cf. Castelnuovo’s

Contractibility Criterion). In 1982, S. Mori, in his seminal work [Mor82], introduced

the celebrated Cone Theorem, which provided the pivotal tools for generalizing the

Minimal Model Program to higher dimensions. By employing the concept of extremal

contractions, Mori established structural theorems about the associated morphisms,

enabling the construction of models that are, in a precise sense, as simple as possible.

This chapter aims, first, to establish the notation and theoretical framework that will be

employed throughout this work, and second, to provide a comprehensive account of the

fundamental tools and results in birational geometry and the Minimal Model Program.

For the most of this chapter X will be a projective variety over an algebraically closed

field k.

I.1 Birational geometry and Intersection theory

I.1.1 Divisors

Let X be an algebraic variety. For us, a divisor will be a Weil divisor, and the abelian

group of divisors will be denoted WDiv(X). The class group of X, denoted Cl(X),

is the group of divisors modulo linear equivalence, and the Picard group Pic(X) of

X is the group of Cartier divisors on X modulo linear equivalence (or equivalently,

isomorphisms classes of line bundles). To allow greater flexibility in working with

divisors, we introduce the following definitions.

Definition I.1.1 (Q-divisors and R-divisors). A Q-divisor (resp. R-divisor) on X is

an element of the Q-vector space WDiv(X)⊗Q (resp. WDiv(X)⊗R) where WDiv(X)

denotes the group of Weil divisors on X. Explicitly, a Q-divisor (resp. R-divisor) D is

a linear combination D =
∑

i aiDi where ai ∈ Q (resp. ai ∈ R) and Di ∈WDiv(X). A

Q-divisor (resp. a R-divisor) is Q-Cartier (resp. R-Cartier) if some multiple is a Cartier

divisor. We say that an R-divisor D =
∑

i aiDi is effective if ai > 0 for all i.

Definition I.1.2. Let f : Y → X be a proper birational morphism, and let U =

Dom(f) be the domain of the rational map f−1, i.e., the largest open subset of X in

which f is an isomorphism. The exceptional locus of f is the closed subset Exc(f) :=

Y \ f−1(U). We say that a Weil divisor on Y is f -exceptional (or simply exceptional if

f is understood in the context) if its support is contained in Exc(f).

6
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Remark I.1.3. Note that if X is a normal variety, Zariski’s Main Theorem implies

that codimX(X \U) ≥ 2, and then a prime divisor E on Y is exceptional if and only if

dim(f(E)) < dim(E).

Definition I.1.4. Let f : X 99K Y be a rational map defined in an open set U ⊂ X.

Given a subvariety Z ⊂ X, the birational or strict transform of Z is f∗(Z) :=

f(Z ∩ U). If g : Y → X is a birational map we use g−1
∗ (Z) to denote the birational

transform of Z by g−1.

If f : Y → X be a proper, birational morphism with X being a normal variety, the

condition codimX(X \ U) ≥ 2 implies that every prime divisor D on X intersects U .

Hence, its birational transform is well-defined, and we adopt the notation D̃ for it. In

a more general setting, if D =
∑

i aiDi is an R-divisor we denote D̃ =
∑

i aiD̃i.

I.1.2 Intersection theory and Nakai-Moishezon criterion for

ampleness

A longstanding and fundamental problem in algebraic geometry has been the devel-

opment of a robust and coherent intersection theory—a theoretical framework capable

of rigorously formalizing the intersection of subvarieties and accurately defining inter-

section multiplicities. Over the years, numerous attempts have been made to tackle

this challenge, ultimately leading to the definition that will be presented in this sec-

tion. While this definition may lack an immediately intuitive geometric interpretation,

it encapsulates the essential properties and behaviors one expects from an intersection

product, ensuring both mathematical rigor and applicability. For the exposition in this

section, we largely follow the framework laid out in [Deb01].

One of the most celebrated results in this context is Bézout’s theorem, which asserts

that the intersection of two plane curves in P2 , counted with multiplicity, equals the

product of their degrees. This elegant theorem serves as a cornerstone in intersection

theory, illustrating the interplay between geometry and algebra. More generally, the

intersection product on a surface can be defined as follows. The precise formulation is

provided in [Bea83, Definition I.3].

Definition I.1.5. Let C andD be two curves on a projective surfaceX with no common

components, let x be a point of C ∩D, and let f and g be respective generators of the

7



Chapter I | Mori theory

ideals of C and D at x. We define the intersection multiplicity of C and D at x to be

mx(C ∩D) = dimk OX,x/(f, g)

Then we set the intersection number of C and D as the integer

(C ·D) =
∑

x∈C∩D

mx(C ∩D).

Building upon this definition, we arrive at the following fundamental property, which

further elucidates its significance.

Lemma I.1.6. For any smooth curve C on X and any Cartier divisor D on X, we

have

(D · C) = deg (OX(D)|C)

Naturally, the next question arises: for which objects does it make sense to define an

intersection product? Intuitively, imposing an equation reduces the dimension of a

variety by at most 1, as suggested by Krull’s Principal Ideal Theorem. Consequently,

if X is a variety of dimension n and we consider divisors D1, . . . , Dn, it follows that

dim(D1 ∩ · · · ∩ Dm) > 0 whenever m < n. This observation naturally leads to the

definition of an intersection product of n divisors on an n-dimensional variety.

To extend this framework, suppose we are working within a subvariety Y ⊂ X of

dimension dim(Y ) = m. In this case, we can restrict the divisors to Y and compute

the product D1|Y · · · · ·Dm|Y . Thus, the objective is to define an intersection product,

denoted (D1 · · · · ·Dn), that satisfies the following essential properties:

1. The integer (D1 · . . . ·Dn) is symmetric and multilinear as a function of its argu-

ments;

2. (D1 · . . . ·Dn) depends only on the linear equivalence classes of the Di;

3. If D1, . . . , Dn are effective divisors that meet transversely at smooth points of X,

then

(D1 · . . . ·Dn) = # {D1 ∩ . . . ∩Dn} .

The justification for point 2 is as follows: when calculating the intersection (D1 · . . . ·
Dk · Y ) of divisors D1, . . . , Dk within an irreducible subvariety Y ⊂ X of dimension k,

8



Chapter I | Mori theory

the product is always well-defined. This is because we can replace each divisor by a

linearly equivalent divisor whose support does not intersect Y , ensuring the intersection

is properly defined.

Due to the above discussion, the intersection product is defined for divisors, and it is

defined by Hilbert polynomials as follows [Deb01, Definition 1.7].

Definition I.1.7. Let D1, . . . , Dr be Cartier divisors on a projective variety X over a

field, with r ≥ dim(X). We define the intersection number

(D1 · . . . ·Dr)

as the coefficient of m1 · · ·mr in the rational polynomial

χ (X,m1D1 + · · ·+mrDr)

If Y ⊂ X is a subvariety of dim(Y ) = k we denote

(D1 · . . . ·Dk · Y ) := (D1|Y · . . . Dk|Y )

Remark I.1.8. Note that this definition works as we expect in the cases of curves,

because by Riemann-Roch theorem for algebraic curves we have

χ(C,mD) = m deg(D) + χ(C,OC) then D · C = deg(OC(D)),

and by I.1.6, this definition generalizes the intersection product on surfaces. Further-

more, [Kol96, Theorem VI.2.8] shows that, indeed, this intersection number counts the

points in D1 ∩ · · · ∩Dn with multiplicity.

Remark I.1.9. The independence of linear classes of divisors in the previous definition

means that we can think of the intersection product only in terms of line bundles,

because the expression (OX(D1) · . . . · OX(Dn)) makes sense. Note that, if D1, . . . , Dk

are divisors in X and Y is a k-dimensional subvariety:

(D1 · . . . ·Dk · Y ) = (OX(D1)|Y · . . . · OX(Dk)|Y )

Example I.1.10. If D is a Cartier divisor on the n-dimensional projective variety X,

the function m 7→ χ(X,mD) is a polynomial P (T ) =
∑n

i=0 aiT
i such that

χ(X,m1D + . . .+mnD) =
n∑

i=0

ai(m1 + . . .+mn)i

and then the coefficient of m1 · · ·mn is ann!, hence

χ(X,mD) = mn (Dn)

n!
+O(mn−1)

9
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This definition is highly flexible, because it also works for Q-divisors by linearity. More-

over, it possesses the desired properties.

Proposition I.1.11. Let D1, . . . , Dn be Cartier divisors on a projective variety X of

dim(X) = n.

1. The map
(D1, . . . , Dn) 7−→ (D1 · . . . ·Dn)

is Z-multilinear, symmetric and takes integral values.

2. If Dn is effective,

(D1 · . . . ·Dn) = (D1|Dn · . . . ·Dn−1|Dn)

A crucial result to carry out several calculations is the projection formula.

Definition I.1.12. Let π : X → Y be a morphism between varieties and let C ⊂ X be

a curve. We define the 1-cycle (i.e., a formal linear combination of irreducible curves)

as

π∗C :=

 0 if dim π(C) = 0

deg(C → π(C))π(C) if dimπ(C) = 1

Theorem I.1.13 (projection formula, [Deb01, Proposition 1]). Let π : X → Y be a

surjective morphism between projective varieties. Let D1, . . . , Dr be Cartier divisors on

Y such that r ≥ dim(X). Then

(π∗D1 · . . . · π∗Dr) = deg(π)(D1 · . . . ·Dr)

In particular, if C ⊂ X is a curve and D ∈ Div(Y ) is a Cartier divisor, then:

(π∗D · C) = (D · π∗C)

The following example shows an explicit calculation using the previous properties.

Example I.1.14. Let X be a n-dimensional smooth projective variety, X̃ the blow-up

on a point and E the exceptional divisor of X̃, i.e., E ∼= Pn−1. We will calculate (En).

We have that

ωE
∼= ωPn−1

∼= OPn−1(−n)

10
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Now, the fact that

Pic(X̃) = ε∗ Pic(X)⊕ Z[OX(E)]

and a classical argument using adjunction formula gives us:

ωE
∼= (ωX̃ ⊗ OX̃(E))|E ∼= ωX̃ |E ⊗ OX̃(E)|E

∼= OX̃((n− 1)E)|E ⊗ OX̃(E)|E
∼= OX̃(nE)|E

and then, since Pic(Pn−1) ∼= Z is torsion-free, we have

OE(E) := OX̃(E)|E ∼= OPn−1(−1)

By Proposition I.1.11 we have

(En) = (E|n−1
E ) = ((−H)n−1) = (−1)n−2(Hn−1)

where H is an hyperplane in Pn−1, and this can be calculated explicitly. We have

χ(Pn−1,mH) = χ(Pn−1,OPn−1(m)) = h0(Pn−1,OPn−1(m))− hn−1(Pn−1,OPn−1(m))

and by the Example I.1.10, it follows that (Hn−1) = 1 and then (En) = (−1)n−1.

Now, the main theorem of this section is presented. It corresponds to Nakai-Moishezon

ampleness criterion, which gives a numerical characterization of the fundamental con-

cept of an ample divisor.

Theorem I.1.15 (Nakai-Moishezon). A Q-Cartier Q-divisor D on a projective variety

X is ample if and only if, for every prime divisor Y of X, of dimension r,

((D|Y )r) = (Dr · Y ) > 0

This theorem also motivates the definition of another widely used class of divisors, these

are the nef divisors.

Definition I.1.16 (nef divisor). Let X be a projective variety. A Q-Cartier Q-divisor

D ∈ Div(X) is nef if for every subvariety Y ⊂ X of dimension r satisfies

(Dr · Y ) ≥ 0

We have the following well-known properties of nef divisors (see e.g. [Laz04, §1.4]).

Theorem I.1.17. Let X be a projective variety. A Q-Cartier Q-divisor is nef if it has

nonnegative intersection with every curve on X.

Lemma I.1.18. Let X be a projective variety. If D,E are nef divisors on X and H is

an ample divisor on X, then D +H is ample and D + E is nef.

11
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I.1.3 The cone of curves and the effective cone

The fundamental definition introduced by Mori pertains to the cone of curves, a vector

space that captures much of the geometry of the variety by employing the intersection

product studied in the previous section. In the following, we introduce the key concepts

of Mori’s theory. Remarkably, the Kleiman’s criterion is presented, alongside the notion

of an extremal ray and its characterization in the case of surfaces.

Definition I.1.19. Let X be a smooth projective variety over a field k. Two Cartier

divisors D,D′ ∈ Div(X) are numerically equivalent, denoted D ≡
num

D′, if

(D · C) = (D′ · C)

for all irreducible curves C ⊂ X. The quotient of Div(X) by this equivalence relation

is denoted N1(X)Z, and we define

N1(X)Q = N1(X)Z ⊗Q , N1(X)R = N1(X)Z ⊗ R

Similarly, we consider the set of formal linear combinations of irreducible curves on X

modulo numerical equivalence, i.e., C ≡
num

C ′ are equivalent if:

(D · C) = (D · C ′) ∀D ∈ Div(X)

denoted N1(X)Z and define:

N1(X)Q = N1(X)Z ⊗Q , N1(X)R = N1(X)Z ⊗ R

Elements of N1(X)R are called 1-cycles.

Theorem I.1.20. The real vector spaces N1(X)R, N1(X)R are finite dimensional and

the intersection pairing

N1(X)R ×N1(X)R → R

is non-degenerate. The dimension of these spaces, denoted by ρX , is called the Picard

number of X.

Definition I.1.21 (cone of curves, effective/nef/ample cone). The cone of curves

NE(X) is the set of classes of effective 1-cycles in N1(X)R. By duality we define the

effective cone Eff(X) as the set of classes of effective divisors in N1(X)R. The nef (resp.

ample) cone is the convex cone of all nef (resp. ample) R-divisor classes on X.

12
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Remark I.1.22. It is worth noting that these cones are convex, but not necessarily

closed (see e.g. [Laz04, Example 1.5.1]). For this reason, we consider their closures in

the metric topology, denoted by NE(X) and Eff(X), which are referred to as the closed

cone of curves and the pseudoeffective cone, respectively.

In terms of this new framework, we arrive at Kleiman’s criterion for ampleness.

Theorem I.1.23 (Kleiman’s criterion). Let X be a projective variety.

1. A Q-Cartier Q-divisor D on X is ample if and only if D · z > 0 for all nonzero

z in NE(X).

2. For any ample divisor H and any k ∈ Z, the set {z ∈ NE(X) | H · z ≤ k} is

compact and therefore contains only finitely many classes of curves.

A particularly useful and practical perspective on this theorem, in the context of the

new terminology, is through the lens of the duality of cones.

Corollary I.1.24 ([Laz04, Proposition 1.4.23]). Let X be a projective variety over a

field. Then

1. The dual of the closed cone of curves NE(X) on X is the nef cone Nef(X).

2. The interior of the nef cone is the ample cone, i.e., Amp(X) = int(Nef(X)), and

the nef cone is the closure of the ample cone, i.e., Nef(X) = Amp(X).

In addition to the definition of a nef divisor, another significant numerical concept is

that of a big divisor, inspired by the asymptotic version of the Riemann-Roch theorem.

Theorem I.1.25 ([Deb01, Proposition 1.31]). Let D be a Cartier divisor on a projective

variety X of dim(X) = n.

1. For all i, it is verified that

hi(X,mD) = O (mn) .

2. If D is nef, we have

hi(X,mD) = O
(
mn−1

)
for all i > 0, hence

h0(X,mD) = mn (Dn)

n!
+O

(
mn−1

)
13
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Definition I.1.26. Let X be a projective variety. A Cartier divisor is big if1

lim sup
m→+∞

h0(X,mD)

mn
> 0

Remark I.1.27. Another usual definition of big divisors is by means of its associated

line bundle. A Cartier divisor D on X is big if and only if OX(D) has maximal Iitaka

dimension.

The motivation behind the definition of a big divisor lies in the fact that the class of

big and nef divisors exhibits particularly good behavior for numerous purposes. The

following result serves as an illustrative example.

Proposition I.1.28. Let D be a nef and big Q-divisor on a projective variety X.

There exists an effective Q-Cartier Q-divisor E on X such that D − tE is ample for

all rationals t in (0, 1].

Below, we introduce the concept of extremal ray, one of the central objects in Mori’s

work. Its profound significance will become evident later in this chapter.

Definition I.1.29 (extremal ray). Let V be a cone in Rm. A subcone W ⊂ V is called

extremal if it is closed and convex and if any two elements of V whose sum is in W are

both in W . An extremal ray of V is an extremal subcone of dimension 1.

In the case of smooth surfaces we have good characterizations of extremal rays.

Proposition I.1.30. Let X be a smooth projective surface.

1. The class of an irreducible curve C with (C2) ≤ 0 is in ∂NE(X).

2. The class of an irreducible curve C with (C2) < 0 spans an extremal ray of NE(X).

3. If the class of an irreducible curve C with (C2) = 0 and (KX · C) < 0 spans an

extremal ray of NE(X), the surface X is ruled over a smooth curve, C is a fiber

and X has Picard number 2.

4. If r spans an extremal ray of NE(X), either r2 ≤ 0 or X has Picard number 1.

1This notion will be revisited in Section I.5, where the number involved in this definition will be

called the volume.

14
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5. If r spans an extremal ray of NE(X) and r2 < 0, the extremal ray is spanned by

the class of an irreducible curve.

We end the section analyzing some explicit examples.

Example I.1.31.

1. We will describe the cone of curves NE(X) of the blow-up X = Blp(Pn) of projec-

tive space at a point p ∈ Pn. We know that Pic(Pn) = Z[H] is generated by the

class of a hyperplane, and by duality we have that N1(X)R = R[ℓ] is generated

by the class of a line. In particular, the cone of curves is simply NE(Pn) = R+[ℓ].

If ε : X → Pn denotes the blow-up and E denotes the exceptional divisor, a

local computation shows that D := ε∗H − E is basepoint-free (in particular is

nef). Since ρX = 2, we know N1(X)R ∼= R2, and we can calculate the cone of

curves in terms of a pair of non-numerically equivalent classes. Consider ℓp ⊂ Pn

a line through p, and e ⊂ E ∼= Pn−1 a line inside the exceptional divisor. Since

[ℓp], [e] ∈ N1(X)R are two different effective classes and ε∗H − E is nef, the com-

putation

(xℓp + ye) · (ε∗H − E) = x+ y

shows that NE(X) is contained in the cone spanned by the classes [ℓp], [e]. The

converse inclusion is obvious since ℓp and e are effective curves. We conclude

NE(X) = R+[ℓp] + R+[e].

2. Consider an abelian surface X. The homogeneity of X implies that every curve

has non-negative self-intersection, because for a given curve C ⊂ X, we can move

it by an element g ∈ X, so C2 = C · (g + C) ≥ 0. If H is an ample divisor on X,

the cone of curves is given by

NE(X) = {z ∈ N1(X)R : z2 ≥ 0, H · z ≥ 0}.

Indeed, inclusion of RHS in NE(X) is clear, and the other inclusion is by 4. in

Proposition I.1.30. Note for example that if N1(X)R is of dimension 3, NE(X) is

not finitely generated.

3. Let C be a smooth curve of genus g(C) and X := C ×C with projections p1, p2 :

X → C. We denote by f1, f2,∆ the numerical classes in N1(X)R of {pt} ×

15
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C, {pt} × C and diagonal respectively. The relations

(∆ · f1) = (∆ · f2) = (f1 · f2) = 1

(f1)
2 = (f2)

2 = 0

are clear. We will calculate (∆)2. It is known that

KX ≡
lin
p∗1KC + p∗2KC

By Riemann-Roch theorem for curves

deg(KC) = 2g(C)− 2

and since all vertical (and horizontal) fibers of X is numerically equivalents we

have

p∗1KC ≡
num

(2g(C)− 2)f1, p∗2KC ≡
num

(2g(C)− 2)f2

Furthermore, ∆ ∼= C and by Riemann-Roch theorem for surfaces

g(C) = 1 +
1

2
(∆2 + (KX · C))

and then

2g(C)− 2 = ∆2 + (p∗1KC ·∆) + (p∗2KC ·∆) = (∆)2 + (2g(C)− 2)((f1 + f2) ·∆)

resulting ∆2 = 2− 2g(C).

Let us now assume that C is an elliptic curve, i.e., g(C) = 1, and then X is an

abelian surface. In this case NE(X) = Nef(X), i.e., any effective curve in X is

nef. This is because

NE(X) =
{
z ∈ N1(X)R | z2 ≥ 0, H · z ≥ 0

}
for an ample divisor H on X, and in an abelian variety for any curve C ′ ⊂ X we

can consider g′ ∈ X such that (C ′)2 = (C ′ · gC ′) ≥ 0. If we write

α = xf1 + yf2 + z∆ (I.1)

then α ∈ Nef(X) if and only if

xy + xz + yz ≥ 0

x+ y + z ≥ 0

When ρ(X) = 3 these equations defines exactly the nef and effective cones.
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I.2 “Bend-and-break lemmas” and The cone theo-

rem

I.2.1 Parametrization of morphisms

In this section, we present basic results related to Hilbert schemes that parametrize

morphisms. Many of these results make use of techniques from Deformation Theory in

their proofs. Throughout this section, we will work with schemes and primarily follow

[Deb01, §2].

In geometry, many objects vary algebraically in terms of parameters that define families

with certain common characteristics. A basic example is the case of conics in P2, which

are parametrized by points in P5. This is an example of a moduli problem, which,

roughly speaking, involves classifying geometric objects (eventually modulo a certain

equivalence relation).

We start the section with a definition that arises from category theory.

Definition I.2.1 (representable functor). Let C be a locally small category and Set

the category of sets. A contravariant functor F : C opp → Set is said to be representable

if it exists an object A ∈ C such that F is naturally isomorphic to the functor of points

HomC (−, A).

We consider projective S-schemes X and Y , with S locally noetherian, and the goal of

this section is to construct a scheme MorS(Y,X) that, in a certain sense, parametrizes

S-morphisms Y → X. The idea is to define the functorial properties that this scheme

should satisfy and to formulate the problem of its existence in terms of the representabil-

ity of a functor.

The property we desire for the scheme MorS(Y,X) is the following: we require the

existence of a universal morphism

funiv : Y ×MorS(Y,X)→ X

such that for any S-scheme T , the correspondence between

• morphismsφ : T → MorS(Y,X) and

• morphisms f : Y × T → X

17



Chapter I | Mori theory

obtained by sending φ to

f(y, t) = funiv (y, φ(t))

is one-to-one.

All these properties translate into the fact that, given an S-scheme T , a T -point of

MorS(Y,X) is the same as a morphism Y ×S T → X ×S T (by using the universal

property of the fibered product). This motivates the following definition.

Definition I.2.2. Let Sch /S the category of schemes over a scheme S, and let X and

Y be schemes over S. Define MorS(Y,X) as the functor

MorS(Y,X) : (Sch /S)opp → Set, T 7→ {T -morphisms Y ×S T → X ×S T}

The goal is then to represent the functor MorS(Y,X) by a scheme. In order to prove

this, we introduce Hilbert’s functor and scheme.

Definition I.2.3. Let X be a projective scheme over a scheme S. The Hilbert functor

defined on the category (Sch /S)opp of schemes over S is defined as follows

HilbX/S : (Sch /S)opp → Set, T 7→ {Z ⊂ XT := X ×S T
∣∣Z → T is flat}

Furthermore, if P ∈ Q[z] is a polynomial and we fix an ample Cartier divisor H on X,

we define the functor

HilbPX/S : (Sch /S)opp → Set

T 7→ {Z ⊂ XT := X ×S T
∣∣Z → T is flat, χ(OZ ⊗ OX(nH)) = P (n) ∀n ∈ Z }

associating the set of all flat families of subschemes of X with Hilbert polynomial P .

Hilbert’s functor then associates to each scheme T the set of flat families of subschemes

ofX parameterized by T , and then the problem of parameterizing subschemes translates

into the representability of the Hilbert functor. This is a classic result by Grothendieck.

Theorem I.2.4 (Grothendieck). Let X be a projective scheme over S and let P ∈ Q[z]

be a polynomial. Then HilbPX/S is representable. We denote by HilbP
X/S the scheme

representing this functor.

Definition I.2.5. Let X be a projective scheme over S. We define the Hilbert scheme

of X as

HilbX/S :=
⊔

P∈Q[z]

HilbP
X/S

18
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Now, the following result (see [Kol96, Theorem 1.10]) allows us to assert the repre-

sentability of the functor MorS(Y,X).

Theorem I.2.6. Let X and Y be projective schemes over S. Assume that X is flat

over S. Then MorS(Y,X) is represented by an open subscheme2

MorS(Y,X) ⊂ Hilb(X×SY/S)

As the notation suggests, the scheme given by the previous theorem satisfy the desired

property. The fact that MorS(Y,X) represents the functor MorS(Y,X) means that

there exists a natural isomorphism

MorS(Y,X) ∼= Hom(−,MorS(Y,X))

and by Yoneda Lemma this the same as a morphism u ∈ MorS(Y,X)(MorS(Y,X)),

satisfying the following universal property

∀T/S,∀v ∈ MorS(Y,X)(T ),∃!f : T → MorS(Y,X), F (f)(u) = v.

Identifying the S-morphisms Y → X with morphisms Y ×S T → X ×S T , we see that

u plays the role of the required universal morphism.

From now on, we fix a field k and we adopt the notation Mor(Y,X) for Mork(Y,X).

An incredible result is that we can understand the tangent space of Mor(Y,X) using

only its functorial properties. The next proposition is proven in [Deb01, Proposition

2.4].

Proposition I.2.7. Let X and Y be varieties over k, with X quasi-projective and Y

projective, let f : Y → X be a k-morphism, and let [f ] be the corresponding k-point of

Mor(Y,X). One has

TMor(Y,X),[f ]
∼= H0 (Y,H om (f ∗ΩX ,OY ))

Proof. Suppose Y = Spec(B), X = Spec(A) are affine schemes (i.e., A,B are k-

algebras). The morphism f : Y → X comes from a ring morphism f# : A → B

and then B is an A-algebra. Remember that a tangent vector on TMor(Y,X),[f ] is the

same as a morphism Spec(k[ε]/⟨ε2⟩) → Mor(Y,X) with image [f ]. By the universal

property of Mor(Y,X) this is the same as a morphism:

fε : Y ×k Spec(k[ε]/⟨ε2⟩) ∼= Spec(B ⊗k k[ε]/⟨ε2⟩)→ Spec(A)

2This inclusion is simply to note that a morphism can be identified with its image.
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and again this is the same as a ring morphism f#
ε : A → B[ε]/⟨ε2⟩. Moreover, this

morphism f#
ε must extend f#, and then it must be of the form

f#
ε (a) = f(a) + εg(a)

for a certain ring homomorphism g : A → B. Note that the condition f#
ε (aa′) =

f#
ε (a)f#

ε (a′) gives that

g (aa′) = f ♯(a)g (a′) + f ♯ (a′) g(a) ∀a, a′ ∈ A

i.e., g is a k−derivation of the A-module B. Thus, the tangent space of Mor(Y,X)

identifies with HomA(ΩA, B) where ΩA is the Kähler differentials module of A (section

II.8 in [Har77]). By adjunction property of scalar extension we have

HomA (ΩA, B) = HomB (ΩA ⊗A B,B)

and recalling that the coherent sheaf associated to ΩA is ΩX we have

TMor(Y,X),[f ]
∼= HomB (ΩA ⊗A B,B) ∼= H0(Y,HomB(ΩA ⊗A B,B)

:
)

∼= H0(Y,ℋℴ𝓂(ΩA ⊗B
:

, B̃))

∼= H0(Y,ℋℴ𝓂(f ∗ΩX ,OY ))

In the general case we coverX by affine open sets Ui = Spec(Ai) and Y by Vi = Spec(Bi)

such that f(Vi) ⊂ Ui. The previous arguments give that on each open set extensions of

f |Vi
: Vi → Ui are parameterized by

HomBi
(ΩAi

⊗Ai
Bi, Bi) = H0 (Vi,ℋℴ𝓂(f ∗ΩX ,OY ))

and gluing these extensions on a global extension of f is the same that asking

gi|Vi∩Vj
= gj|Vi∩Vj

∀i, j

which is exactly the gluing condition for sections of a sheaf.

Remark I.2.8. Note that when X is smooth along f(Y ) we have

TMor(Y,X),[f ]
∼= H0 (Y, f ∗TX)

The following theorem gives a lower bound for the dimension of the space of morphisms,

and the proof uses Deformation Theory techniques.
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Theorem I.2.9. Let X and Y be projective varieties over a field k and let f : Y → X

be a k-morphism such that X is smooth along f(Y ). Locally around [f ], the scheme

Mor(Y,X) can be defined by h1 (Y, f ∗TX) equations in a smooth scheme of dimen-

sion h0 (Y, f ∗TX). In particular, any (geometric) irreducible component of Mor(Y,X)

through [f ] has dimension at least

h0 (Y, f ∗TX)− h1 (Y, f ∗TX) .

The bend-and-break lemmas, fundamental results by Mori that will be presented in the

next section, are based on the assumption that the subscheme of Mor(Y,X) fixing a

finite set of points has at least dimension 1. To understand this we have the following

proposition.

Proposition I.2.10. Let X, Y be varieties with Y projective and X quasi-projective,

and {y1, . . . , yr} ⊂ Y, {x1, . . . , xr} ⊂ X finite sets of points. Then if f(Y ) is smooth on

X, the tangent space of Mor(Y,X; yi 7→ xi) (subscheme of morphisms mapping yi 7→ xi)

in the point [f ] ∈ Mor(Y,X; yi 7→ xi) is

TMor(Y,X;yi 7→xi),[f ] = H0 (Y, f ∗TX ⊗Iy1,...,yr)

In particular, the dimension of its irreducible components through [f ] is at least

h0 (Y, f ∗TX)− h1 (Y, f ∗TX)− r dim(X)

Remark I.2.11. In Proposition I.2.10, if Y = C is a curve, Riemann-Roch theorem

gives the bound

dim[f ] Mor (C,X; ci 7→ f (ci)) ≥ χ (C, f ∗TX)− r dim(X)

= −KX · f∗C + (1− g(C)− r) dim(X)

I.2.2 “Bend-and-break” lemmas

The main ingredient to prove The cone theorem is a version of its famous “bend-and-

break” lemmas. We present two different versions and some geometric consequences.

We present only sketches of the proofs.

Theorem I.2.12 ([Deb01, Proposition 3.5]). Let X be a projective variety and let H

be an ample Cartier divisor on X. Take a smooth curve f : C → X on X and B a

finite non-empty subset of C such that

dim[f ] Mor(C,X;B 7→ f(B)) ≥ 1.
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There exists a rational curve Γ on X which meets f(B) and such that

(H · Γ) ≤ 2 (H · f∗C)

Card(B)

Sketch of the proof. We list below the steps of the proof.

1. Let b = Card(B) and C ′ the normalization of C. If C ′ is rational and f has degree

≥ b/2 take Γ = C ′.

2. Note that the dimension of the space of morphisms from C to f(C) sending B to

f(B) is 0 in the case that C ′ is irrational or C ′ rational and degree of f is < b/2.

3. Take T a 1-dimensional subvariety of dim[f ] Mor(C,X;B 7→ f(B)) through [f ].

By previous step the images are not all the same. Take T a smooth compactifica-

tion of T and solve the indeterminacies of the evaluation map e : S → C × T ev
99K

X, and note that its image is a surface.

4. For every i = 1, . . . , b, consider the inverse images on S of the (−1)-curves that

appear blowing-up points on the strict transform of {bi} × T . Denote this curves

by Ei,1, . . . , Ei,ni
. Note that

(Ei,j · Ei′,j′) = −δi,jδi′,j′ .

5. Prove that

((e∗H)2) ≤
∑
i,j

ai,j

(
2d

b
− ai,j

)
where

a =
(
e∗H · ε∗T̄

)
≥ 0 , ai,j = (e∗H · Ei,j) ≥ 0 , ba =

∑
i,j

ai,j

and conclude that exists i0, j0 such that 0 < ai0,j0 <
2d
b

. Conclude that exists

a rational component of e∗Ei0,j0 which passes through f(ci0). This curve is the

desired Γ.
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Theorem I.2.13 (Miyaoka-Mori). Let X be a projective variety, let H be an ample

divisor on X, and let f : C → X be a smooth curve such that X is smooth along f(C)

and (KX · f∗C) < 0. Given any point x on f(C), there exists a rational curve Γ on X

through x with

(H · Γ) ≤ 2 dim(X)
(H · f∗C)

(−KX · f∗C)

If X is smooth, it is also verified that (−KX · Γ) ≤ dim(X) + 1.

Sketch of the proof. The main idea of the proof is suppose in first place k has charac-

teristic p > 0 and use Frobenius morphism to raise the degree of f . Compose f with

m Frobenius morphism to obtain fm : Cm → X with degree pm deg(f) and consider

Bm ⊂ Cm with bm points. The bound of Observation I.2.11 gives

dim[fm] Mor (Cm, X;Bm 7→ fm (Bm)) ≥ pm (−KX · f∗C) + (1− g(C)− bm) dim(X),

Take m sufficientely large and bm such that the previous bound is positive. Use Theorem

I.2.12 to produce a rational curve through some point of fm(bm). Conclude the proof

in positive characteristic.

The proof in characteristic 0 is done considering a finitely generated domain where

X,C, f,H are defined and taking a quotient that is a finite field. The conclusion

follows applying the previous result.

The previous theorem allows us to derived an interesting characterization of varieties

whose anti-canonical divisor is nef.

Theorem I.2.14 ([Deb01, Theorem 3.10]). If X is a smooth projective variety with

−KX nef,

• either KX is numerically trivial,

• or there is a rational curve through any point of X.

Proof. Consider an embedding X ↪→ PN
k given by an hyperplane section H on X,

i.e., a very ample divisor, and suppose (KX · Hn−1) = 0. Let C ⊂ X be a curve

and take hypersurfaces H1, . . . , Hn−1 ∈ PN
k of degrees d1, . . . , dn−1 such that Z :=

X ∩ H1 ∩ · · · ∩ Hn−1 contains C and has pure dimension 1 (this is always possible
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by making succesive cuts). Now, every hypersurface in PN
k is linearly equivalent to a

multiple of H, more especifically, Hi ∼ diH for every i = 1, . . . , n− 1, and then

0 ≤ (−KX · C) ≤ (−KX · Z) = d1 · · · dn−1

(
−KX ·Hn−1

)
= 0

so KX is numerically trivial. Since −KX is nef, we assume now (KX ·Hn−1) < 0. Take

a point x ∈ X. By Bertini theorem we can take hyperplane sections of X by n − 1

hyperplanes such that their intersection is an irreducible curve containing x. Let C be

the normalization of this curve. Then (KX · C) = (KX · Hn−1) < 0 and by Theorem

I.2.13 there is a rational curve on X which passes through x.

Example I.2.15. An abelian variety A has trivial canonical divisor, and by the above

Theorem doesn’t contain rational curves. Alternatively, by the universal property of

the Albanese map, we have that every morphism P1 → A is necessarily constant (see

[Bea83, Theorem V.13]).

I.2.3 The cone theorem

Using the bend-and break techniques presented in the previous section we will be able

to prove the cone theorem. For a subset S ⊂ N1(X)R and a Cartier divisor D on X,

we use the notation

SD≥0 := {z ∈ S : D · z ≥ 0}

and similarly for SD≥0, SD>0 and SD<0.

Theorem I.2.16 (Mori’s Cone Theorem, [Deb01, Kol96]). Let X be a smooth projective

variety. There exists a countable family (Γi)i∈I of rational curves on X such that

0 < (−KX · Γi) ≤ dim(X) + 1

and

NE(X) = NE(X)KX≥0 +
∑
i∈I

R+ [Γi] ,

where the R+ [Γi] are all the extremal rays of NE(X) that meet N1(X)KX<0; these

rays are locally discrete in that half-space, i.e., these rays can only accumulate in the

hyperplane KX = 0.

Proof. First, we know that the set of classes of irreducible curves [C] ofX is discrete, and

in particular numerical classes of rational curves satisfying 0 < (−KX · zi) ≤ dim(X)+1

are countable, and we pick a representative Γi for each class zi of this form.
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We define

V := NE(X)KX≥0 +
∑
i∈I

R+ [Γi]

Now the proof is divided in 3 steps. First, we prove that negative extremal rays are

locally discrete, secondly, we prove NE(X) = V and finally we prove that V is closed.

Step 1: the rays R+zi are locally discrete in N1(X)KX<0. Let H be an ample divisor on

X. By a limit argument we note that:

N1(X)KX<0 =
⋃
ε>0

N1(X)KX+εH<0

and then is sufficient to prove that there are only finite classes zi in N1(X)KX+εH<0 for

each ε > 0 (because we can isolate each class) sufficiently separated from {KX = 0}.
We note that if ((KX + εH) · Γi) < 0 then

(H · Γi) <
1

ε
(−KX · Γi) ≤

1

ε
(dim(X) + 1)

and Kleiman’s criterion allows us to conclude.

Step 2: NE(X) is equal to the closure of V . Suppose by contradiction that NE(X) ̸= V ,

in which case V is a proper closed subcone of NE(X). By definition the effective cone

NE(X) contains no lines, and this implies that exists a linear form in N1(X)∗R which is

positive on V \ {0} and vanishes on some extremal ray of NE(X). As the intersection

product is a perfect pairing we can identify the dual of N1(X)R with N1(X)R and this

translates into the existence of an R-divisor M such that is nonnegative on NE(X),

positive on V \ {0} and (M · z) = 0 for some nonzero z ∈ NE(X). By construction V

contains all KX−positive classes, and then KX · z < 0. It is important to note M is a

nef divisor.

Now choose a norm on N1(X)R such that ∥[C]∥ ≥ 1 for each irreducible curve C ⊂ X.

Note that this is possible because numerical classes of curves are a discrete set. In

addition, we can suppose (M · v) ≥ ∥v∥ for all v ∈ V because we can replace M by a

positive multiple without change his properties. For the z ∈ NE(X) taken above we

see that

2 dim(X)(M · z) = 0 < (−KX · z)

As M is nef, we can approximate it by ample Q-divisor, and since z ∈ NE(X) we can

approximate by effective 1-cycles. these facts allow us to consider H ample Q−divisor
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and Z effective 1-cycle verifying

2 dim(X)(H · Z) < (−KX · Z)

and such that H preserves the norm condition

(H · v) ≥ ∥v∥ ∀v ∈ V

A short argument allows us to assume that every component C of Z verify (−KX ·C) >

0, because if (−KX ·C) ≤ 0, the number (H ·Z) goes down by removing C (H is ample)

and (−KX · Z) increases.

By construction every rational curve Γ such that (−KX ,Γ) ≤ dim(X) + 1 is in V , so

for each curve of this type we have (H ·Γ) ≥ ∥Γ∥ ≥ 1. Then by Mori’s bend-and-break

lemma, since X is smooth, for every component C of Z exists a rational curve Γ such

that

2 dim(X)
(H · C)

(−KX · C)
≥ (H · Γ)

and even more, we can assume (−KX ,Γ) ≤ dim(X) + 1. This implies [Γ] ∈ V , and

then

2 dim(X)(H · C) ≥ (−KX · C)

Adding the inequality above over every component of Z we reach a contradiction with

previous inequality.

Step 3: for any set of indices J the cone

NE(X)KX≥0 +
∑
j∈J

R+zj

is closed. Let VJ be this cone. By definition VJ contains no lines, and then VJ is equal

to the convex hull of its extremal rays. Then, to prove VJ = VJ it is sufficient to prove

that any extremal ray R+r ∈ VJ satisfying (KX · e) is in VJ .

To prove this we use the first step. Take H an ample divisor on X and ε > 0 such that

((KX + εH) · r) < 0. The first step gives us that there are only finitely many classes

zj1 , . . . , zjn such that ((KX + εH) · zjα) < 0. Sinces r ∈ VJ we can write it as the limit

of a sequence (rm + sm)m∈N with rm ∈ NE(X)KX+εH≥0 and

sm =
∑
α

λα,mzjα
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By construction we have

(H · rm) > 0, (H · zjα) > 0, λα,m > 0 ∀α,m

This implies that the sequences (H · rm), (λα,m) are bounded because we have

(H · rm + sm) → (H · r). Now, Kleiman criterion gives that the set {z ∈ NE(X) :

(H · z) ≤ k} is compact, and therefore taking subsequences we may assume (rm)m∈N

and (λα,m)m∈N are convergent. Write the limit of (rm + sm)m∈N as r + z. Because r is

an extremal ray and r = r+ z, the classes r, z are positive multiples of r. However, we

know that (KX + εH · r) < 0, but (rm)m∈N ⊂ NE(X)KX+εH≥0 and then

(KX + εH · r) ≥ 0 and hence r = 0

Thus, we conclude that r is a multiple of one of the zjα , and therefore is in VJ .

Clearly, steps 2 and 3 finish the proof.

NE(X)

KX = 0

KX > 0

KX < 0

0

[Γ1]

[Γ2]

[Γ3]

A representation of the cone of curves.

We finish this section with the supporting divisor corollary.

Corollary I.2.17. Let X be a smooth projective variety and let R be a KX-negative

extremal ray. There exists a nef divisor MR on X such that

R =
{
z ∈ NE(X) |MR · z = 0

}
.

For any such divisor, mMR −KX is ample for all m ≫ 0. MR is called a supporting

divisor for R.

I.3 Contractions of extremal rays

In the classification of surfaces, Castelnuovo’s contractibility criterion is a crucial state-

ment because it says that the key question to construct minimal surfaces is: is there
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a (−1)-curve on S?. In this sense, the first step to generalize this process to higher

dimension is to replace this question for a new one. Then, Mori formulated the question

“Is KS nef?”

With this perspective, the cone theorem states:

“If it is not, then there exists a KS-negative extremal ray”.

And then, Mori asserts:

“If a KS-negative extremal ray exists, we can contract it”.

This framework forms the foundation of the Minimal Model Program (MMP). In this

section we adress the existence of extremal contractions and we classify them into three

distinct types.

I.3.1 Existence of extremal contractions

The fundamental result that makes it possible to carry out the Minimal Model Program

is the existence of KX−negative extremal rays contractions. By a contraction of an

extremal ray R of a variety X (i.e., R is an extremal ray of NE(X)) we refer to a

surjective morphism cR : X ↠ Y such that

1. if Γ ⊂ X is an irreducible curve, dim(cR(Γ)) = 0 ⇐⇒ [Γ] ∈ R.

2. cR∗OX
∼= OY .

To prove the existence of extremal contractions we will need the following fundamental

result (see [KMM87, Theorem 3-1-1]).

Theorem I.3.1 (Kawamata). Let X be a smooth complex projective variety and let D

be a nef divisor on X such that aD−KX is big and nef for some a ∈ Q>0. The divisor

mD is generated by its global sections for all m≫ 0.

The next theorem is the fundamental result about the existence of contractions.

Theorem I.3.2 ([Deb01, Theorem 7.39], [KM98, Corollary 3.17]). Let X be a smooth

complex projective variety and let R be a KX-negative extremal ray.
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1. The contraction cR : X ↠ Y of R exists, where Y is a normal projective variety.

It is given by the Stein factorization of the morphism defined by any sufficiently

high multiple of any supporting divisor of R. This morphism is unique up to

isomorphism.

2. Let C be any integral curve on X with class in R. There is an exact sequence

0 // Pic(Y )
c∗R // Pic(X) // Z

[D] � // (C ·D)

and ρY = ρX − 1.

Proof.

1. Let MR be a supporting divisor for R. The hypothesis of Kawamata theorem are

fullfilled so mMR is generated by global sections for all m≫ 0. Thus, we obtain

a regular morphism ψ : X → PN which has a Stein factorization

X
cR−→ Y

φR−→ PN

and the one we search is cR, which has connected fibers.

Let’s see that cR contracts R. The morphism φR is finite and then the divisor

Dm := φ∗
ROPn(1) is ample on Y . On the one hand, projection formula shows

(c∗RDm · Γ) = (Dm · (cR)∗(Γ)) = 0 ⇐⇒ dim((cR)∗(Γ)) = 0

and on the other hand

(c∗RDm · Γ) = (c∗Rφ
∗
ROPn(1) · Γ) = (mMR · Γ) = 0 ⇐⇒ [Γ] ∈ R

This shows that cR is the desired morphism.

2. We prove first injectivity of c∗R. Since cR∗OX
∼= OY , if L ∈ Pic(Y ) by projection

formula

(cR)∗ (c∗RL) ∼= (cR)∗ (c∗RL⊗ OY ) ∼= L⊗ (cR)∗OX
∼= L

and c∗R is injective, because we can recover L aplying (cR)∗. Let C ⊂ X be an

irreducible curve with class in R, and D ∈ Div(X) a divisor such that (D ·C) = 0.

The supporting divisor MR has the property that is positive on the cone

V = NE(X)KX≥0 +
∑

R′∈R−{R}

R′
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where R denotes the set of extremal rays, and we can take m sufficiently large such

that mMR+D is also positive on V \{0}, i.e., mMR+D is also a supporting divisor

for R. Now, by uniqueness of the contraction cR, a multiple m′(mMR+D) defines

the same morphism. Using the same idea as before of using the finite morphism

of Stein factorization to pulling back a divisor, there exists a divisor Em,m′ on X

such that c∗REm,m′ ≡
lin
m′(mMR +D). We get

c∗R(Em,m′+1 − Em,m′ −Dm) ≡
lin

(mMR +D)−mMR ≡
lin
D

which ends the proof.

I.3.2 Types of contractions

In the previous section we solved the problem of the existence of contractions in the

smooth case, so we can always contract a negative extremal ray. Now, the problem is to

determine how singular the resulting variety is, in order to can continuate this process.

Definition I.3.3 (relative cone). Let X, Y be projective varieties and π : X → Y a

morphism. The relative cone of curves of π is the convex subcone NE(π) of NE(X)

generated by the classes of curves contracted by π. If H is an ample divisor on Y ,

π∗(C) = 0 if and only if (π∗H · C) = 0. Thus, NE(π) = NE(X) ∩ (π∗H)⊥ is closed in

NE(X) and

NE(π) ⊂ NE(X) ∩ (π∗H)⊥

Example I.3.4. Consider X = Pn × Pm the product of two projective spaces. Since

Pic(X) ∼= Z2 we have N1(X)R ∼= R2, and a basis is given by the classes of a line ℓ1 ⊂ Pn

and a line ℓ2 ⊂ Pm. The cone of curves of X is clearly given by NE(X) = R+[ℓ1]+R+[ℓ2].

If we consider the coordinate projections pr1 : X → Pn, pr2 : X → Pm, its relative cones

are

NE(pr1) = R+[ℓ1] and NE(pr2) = R+[ℓ2]

In terms of the relative cone of curves, we can state a relative version of Kleiman’s

ampleness criterion, whose proof follows immediately.
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Definition I.3.5. Let f : X → Y be a morphism between normal varieties, and let D

be a Cartier divisor on X. We say D is f -ample (or relatively ample respect to f) if

the restriction of D to every fiber of f is ample.

Theorem I.3.6 (Kleiman’s relative criterion, [KM98, Theorem 1.44]). Let π : X → Y

be a projective morphism, and let D be a Cartier divisor on X. Then D is π-ample if

and only if

D>0 ⊃ NE(π) \ {0},

i.e., if D is positive inside the relative cone.

Consider X as a smooth projective variety, R a KX-negative extremal ray and cR :

X ↠ Y its contraction. According to the definition above, the relative cone of cR is R

and since (cR)∗OX
∼= OY we have two possbilities: either dim(Y ) < dim(X) or cR is

birational3.

Definition I.3.7 (exceptional locus). Let π : X → Y be a proper birational morphism.

The exceptional locus of π is the closed set of points of X such that π is not a local

isomorphism, or equivalently, it is the domain of the inverse map. This locus is denoted

Exc(π). If cR is the contraction of a KX-negative extremal ray R of X, the exceptional

locus of cR is called the locus of R, denoted as locus(R).

From this discussion we conclude that we can divide contractions into 3 different classes,

listed in the following definition.

Definition I.3.8. Let X be a smooth complex variety, let R be a KX-negative extremal

ray R of X, and let cR : X ↠ Y be its contraction. We say that cR is a

1. fiber contraction if locus(R) = X.

2. divisorial contraction if codimX(locus(R)) = 1.

3. small contraction if codimX(locus(R)) ≥ 2.

Remark I.3.9. By virtue of the very construction of the contraction morphism via

Stein factorization, the resulting variety of a contraction is necessarily normal.

3This is because of the upper semicontinuity of the dimension of the fibers. As cR has connected

fibers, these are either a point or a positive dimension subvariety of X, and the set of points where

dimx(c
−1
R (cR(x))) = 0 is an open set.
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Proposition I.3.10 ([Deb01, Proposition 6.10]). Let X be a smooth complex projective

variety and let R be a KX-negative extremal ray of X. The locus of R is closed and if

Z is an irreducible component of locus(R),

1. Z is covered by rational curves contracted by cR;

2. if Z has codimension 1, then it is equal to locus (R);

3. the following inequality holds

dim(Z) ≥ 1

2
(dim(X) + dim (cR(Z))

The previous Proposition motivates the following definition.

Definition I.3.11 (length of an extremal ray). Let X be a smooth complex projective

variety and R a KX-negative extremal ray of X. We define the length of R as

ℓ(R) = min {(−KX · Γ) | Γ rational curve on X with class in R}

The next theorem is presented in [Wis91].

Theorem I.3.12. Let X be an smooth complex projective variety and R a KX-negative

extremal ray of X. Let F be an irreducible component of a non-trivial fiber of the

contraction cR. Then

dimF + dim(locus(R)) ≥ dimX + ℓ(R)− 1.

In particular, F is covered by rational curves of (−KX)-degree at most dim(F ) + 1 −
codim(locus(R)).

Building upon the structural results of contractions established thus far, we proceed to

examine each type of contraction individually.

Fiber contractions

First and foremost, we introduce the notion of a Fano variety, a significant class of

varieties that will constitute the primary focus of Chapter 2.

Definition I.3.13. A Fano variety is a smooth complex projective variety X such that

its anticanonical divisor −KX is ample. A Fano surface is called a del Pezzo surface4

4See Proposition II.1.5 for a complete description of these surfaces.
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Here is the reason to introduce Fano varieties. Consider X as a smooth complex variety

and R a KX-negative extremal ray with cR : X ↠ Y a fiber type contraction. In this

case dim(Y ) < dim(X) and by Proposition I.3.10 X = locus(R) is covered by rational

curves, and moreover a general fiber F of cR is smooth and verifies −KF = −(KX)|F
is ample because by Kleiman criterion −KX is cR-ample. Thus, fiber contractions are

fibrations on Fano varieties.

Proposition I.3.14. Let X be a smooth complex projective variety and let R be a

KX-negative extremal ray. If the contraction cR : X → Y is of fiber type, Y is locally

factorial.

The main example of a fiber type contraction is a projective bundle. This is explained

in the following example.

Example I.3.15. Let E be a vector bundle (or a locally free sheaf) of rank r over

a smoth projective variety Y , and X = P(E ) the associated projective bundle with

projection π : X ↠ Y . Denote by ξ the class of OX(1). In this case we have the

formula5:

ωX
∼= π∗ (ωY ⊗ det(E ))⊗ OX(−r)

In terms of divisors this formular is written as

KX = −rξ + π∗(KY + det(E )).

Let ℓ be a line contained in a fiber of π. This fiber is simply Pr−1, and then by projection

formula

(KX · ℓ) = −r(ξ · ℓ) + (KY + det(E ) · π∗(ℓ)) = −r(ξ · ℓ) = −r

Observe that the numerical class [ℓ] spans aKX-negative extremal ray whose contraction

is π. Indeed, every curve contracted by π is a curve on Pr whose intersection product is

governed by the degree, and therefore every contracted curve is numerically equivalent

to a multiple of [ℓ]. Thus, NE(π) = R+[ℓ] and then this ray is extremal.

In [Mor82], Mori classified all possible fiber type contractions of threefolds in terms of

the description of the fibers.

5This formula follows the Grothendieck convention of projective bundle as the space of hyperplanes

on each fiber.
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Theorem I.3.16. Let X be a smooth complex projective threefold, R be a KX-negative

extremal ray with contraction cR : X ↠ Y of fiber type.

1. If dim(Y ) = 2 we have the following possibilities

(a) cR : X ↠ Y is a conic bundle with a singular fiber.

(b) cR : X ↠ Y is a P1-bundle.

2. If dim(Y ) = 1 the possibilities are

(a) the general fiber of cR : X ↠ Y is a del Pezzo surface S of degree d :=

(−KS)2 ∈ {1, . . . , 6}.

(b) cR is a quadric bundle.

(c) cR is a P2-bundle.

Divisorial contractions

Analogous to the case of fiber type contractions, the outcome of a divisorial contraction

may be singular. Nevertheless, it is guaranteed to be at least locally Q-factorial (i.e.,

every Weil divisor has a multiple which is Cartier), allowing us to apply intersection

theory without any problem. Indeed, if X is locally Q-factorial, C is a curve and D is

a Weil divisor which is not Cartier, we can take m such that mD is Cartier and define:

(D · C) =
1

m
deg OC(mD)

The only point to bear in mind is that the result may be a rational number.

Proposition I.3.17. Let X be a smooth complex projective variety and let R be a KX-

negative extremal ray whose contraction cR : X ↠ Y is divisorial. Then Y is locally

Q-factorial.

Example I.3.18. A smooth blow-up is the prototypical example of a divisorial contrac-

tion. Let Y be a smooth complex projective variety and Z ⊂ Y and smooth subvariety

of codimensión c. The blow-up ε : X ↠ Y along Z satisfies:

KX = π∗KY + (c− 1)E,

where E denotes the exceptional divisor. Moreover, if ℓ is a line contained in a fiber

F of the projection E → Z we have (KX · ℓ) = −(c − 1). A argument analogous to

that in Example I.3.15 shows that [ℓ] generates an KX-negative extremal ray whose

contraction is ε. This is a divisorial contraction because locus(R) = E.
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In a similar fashion to the case of fiber contractions, Mori classified all divisorial con-

tractions of a smooth projective threefold.

Theorem I.3.19 ([IP99, Theorem 1.4.3]). Let X be a smooth complex projective three-

fold, R be a KX-negative extremal ray with contraction cR : X → Y of divisorial type.

Then the situation is one of the following:

(E1) Y is smooth and X is the blow-up of Y along a smooth curve.

(E2) Y is smooth and X is the blow-up of Y at a point.

(E3) X is the blow-up of Y on a singular point analytically isomorphic to

0 ∈ SpecC[X, Y, Z,W ]/⟨X2 + Y 2 + Z2 +W 2⟩

where all the curves on the exceptional divisor E ∼= P1 × P1 are numerically

proportional.

(E4) X is the blow-up of Y on a singular point analytically isomorphic to

0 ∈ SpecC[X, Y, Z,W ]/⟨X2 + Y 2 + Z2 +W 3⟩

(E5) X is the blow-up of Y on a singular point analytically isomorphic to

0 ∈ SpecC[X, Y, Z]⟨i⟩

where C[X, Y, Z]⟨i⟩ denotes the ring of invariants by the action of the involution

i : (X, Y, Z)→ (−X,−Y,−Z).

Example I.3.20 (divisorial contraction with a singular image). As an example we

comment the case 3. of Theorem I.3.19. Let Z be a smooth complex projective threefold

and let C be an irreducible curve in Z with a unique singularity being a node, i.e., an

ordinary double point. In this case, locally analytically, the ideal of C is generated by

xy, z where x, y, z are local parameters. The situation is then

C = {xy = z = 0} ⊂ Z
analytically∼= A3 = SpecC[x, y, z]

and the blow up Y of Z along C is given by{
((x, y, z), [u, v]) ∈ A3

k ×P1
ℸ | xyv = zu

}
which is smooth except at q = ((0, 0, 0), [0, 1]). Now let X be the blow-up of Y at q. A

local computation shows that X is smooth and the exceptional divisor of X → Z is a

quadric surface E ∼= P1 × P1.
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Small contractions

In this section we consider X as a smooth complex projective variety and R being a KX-

negative extremal ray with cR : X ↠ Y a small contraction, i.e., codim locus(R) ≥ 2.

This is the worst case of contraction, because Y is always very singular, as is indicated

by the following result.

Proposition I.3.21. Let Y be a normal and locally Q-factorial variety and let π : X →
Y be a birational proper morphism. Every irreducible component of the exceptional locus

of π has codimension 1 in X.

Proof. Denote by E = Exc(π) the exceptional locus of π, and let x ∈ E, y = π(x).

We will prove that there is a codimension 1 component of E through x, which will

give us the conclusion. We have an isomorphism of fields π∗ : k(Y )
∼−→ k(X), and

π∗(OY,y) ⊊ OX,x is a proper subring (because π is not an isomorphism at x). In

particular, there exists an element t ∈ mX,x \ π∗(OY,y). We write div(t) = D −D′, i.e.,

D is the divisor of zeros and D′ the divisor of poles, and we assume that D,D′ has no

common components. Since Y is locally Q-factorial, there exists m ∈ N≥1 such that

mD and mD′ are both effective Cartier divisors, so there exists u, v ∈ OY,y such that

π∗(tm) = u
v
. We claim that u, v ∈ mY,y. Indeed, if v /∈ mY.y then (π∗(t))m ∈ OY.y, and

as Y is normal we obtain π∗(t) ∈ OY,y, and it follows that u = vπ∗(tm) ∈ mY,y. The

subvariety Z = {u = v = 0} ⊂ Y has codimension 2 and it contains y = π(x), but

x ∈ π−1(Z) = {v = 0} and π−1(Z) has codimension 1, i.e., π−1(Z) ⊂ E.

By the previous Proposition we have that the result of a small contraction is not even

locally Q-factorial, and therefore we cannot use intersection theory to perform calcula-

tions.

Remark I.3.22. An interesting fact is that there are no small contractions on smooth

threefolds. In effect, by Theorem I.3.12 we have that any positive-dimensional irre-

ducible component F of a fiber of cR verifies

dim(F ) ≥ codim(locus(R)) + ℓ(R)− 1 = 1 + ℓ(R) ≥ 2

and then by Proposition I.3.10

dim(X) ≥ dim(cR(locus(R))) + 4

Thus, by dimensional reasons small contractions cannot happen in this case.
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In dimension ≥ 4 small contractions can be appear, and we must solve this problem.

Faced with this situation, Mori proposed the idea that there should exist another pro-

jective variety X+ with a small contraction c+ : X → Y such that KX+ is c+-ample,

i.e., we can flip the extremal ray of the contration in such a way that it becomes a KX-

positive ray. In other words, we are looking for a way to avoid the small contractions.

This motivates the following fundamental definition.

Definition I.3.23 (flip). Let

c : X → Y

be a small contraction of an extremal ray with respect to KX between normal projective

varieties such that KX is Q-Cartier and −KX is c-ample. A flip is a small contraction

c+ : X+ → Y such that

1. X+ is a normal projective variety.

2. KX+ is Q-Cartier and c+-ample.

Remark I.3.24. We finish this section summarizing the ideas behind MMP and the

problems that there is solved in order to run the MMP. Given a variety X, you can

succesively contract its KX-negative extremal rays, until you end up with a variety

which either has a fiber type contraction, or has nef canonical divisor. Thus, when we

run this process three problems arise:

1. Because the result of a contraction can be singular, we have to expand our methods

to allow singularities. This problem will be adressed briefly in the next section.

2. Since small contractions could be appear, a problem we have to surpass is the

existence of flips. The existence of flips was proven in [BCHM10].

3. Another problem concerning flips is the termination of flips. Whereas fiber type

and divisorial contractions decreases Picard number by 1, flips do not. The ques-

tion that arises naturally is if it can exist an infinite sequence of flips. This is still

an open problem in full generality.

I.3.3 An example of a flip

The goal of this section is to provide a detailed analysis of a specific example of a

flip in dimension 3. This example is drawn from [Deb01]. To make the computations
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explicit, we will first introduce some preliminary results, primarily concerning projective

bundles.

First, we discuss the computation of the normal bundle of a section in a projective

bundle. Next, we establish a proposition that describes how to compute the normal

bundle of the strict transform of a section within the blow-up of a threefold. Finally,

we examine an explicit example of a flip.

Now, we turn to the first objective. The setup is as follows: let X be a complex

projective variety of dimension dim(X) = n, and let E
p−→ X be a vector bundle of rank

r. We consider the associated projective bundle P := PX(E), which is a projective

variety of dimension dim(P ) = dim(X) + r − 1, equipped with the natural projection

π : P → X.

Below, we recall the construction of the tautological bundle.

Construction I.3.25. In P we have the pullback bundle π∗E whose fiber at a point

p ∈ P is by definition (π∗E)p := Eπ(p). This vector bundle has a natural sub-bundle N

of rank n− 1. A point p ∈ P represents a point in the projectivization P(Eπ(p)), i.e., is

an hyperplane Hp on the fiber Eπ(p). We define the line bundle N as Np := Hp at each

point p ∈ P . Then the vector bundle OP (1) is defined by the following exact sequence

of vector bundles on P :

0→ N → π∗E
u−→ OP (1)→ 0

Then, in a point p ∈ P the fiber of OP (1) corresponds to (OP (1))p := Eπ(p))/Hp, and

the natural map u corresponds to the quotient projection:

up : (π∗E)p ↠ (OP (1))p, x 7→ x+Hp

Proposition I.3.26. Let Y be a complex projective variety and let f : Y → X be a

regular morphism. There is a correspondence:

{g : Y → P |π ◦ g = f} ∼←−→ {L ∈ Pic(Y ) and v : f ∗E → L surjective}

g 7−→ L := g∗OP (1) and v := g∗u

(g := y 7→ P(ker(vy))) ←− [ (L, v)

Proof. Given a morphism g : Y → P , we simply take the pullback L := g∗OS(1) and

the pullback morphism v := g∗u is simply vy := ug(y) at a point y ∈ Y . Conversely, if

we have a line bundle L ∈ Pic(Y ) and a surjective morphism v : f ∗E ↠ L, by definition
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ker(vy) corresponds to an hyperplane on the fiber Ef(y), i.e., it is on the fiber of f(y)

along π and then π ◦ g = f .

These constructions are inverses one to the other because Ly is the cokernel of the

embedding Ng(y) ⊂ Ef(y).

Remark I.3.27. The previous proposition with Y = X and f = Id gives us a 1 − 1

correspondence between sections of the natural projection π and rank 1 quotients of E.

The question that we want to solve here is how to calculate the normal bundle of a

section s : X → P of the projection π, which by the Remark is the same as a rank 1

quotient of E, which we call L.

Then we have a surjection E ↠ L and therefore an exact sequence of vector bundles

on X:

0→ F → E
q−→ L→ 0

Taking pullbacks is an exact operation, so:

0→ π∗F → π∗E → π∗L→ 0

is an exact sequence on P . Composing maps we obtain a morphism π∗F → OP (1).

Twisting the above morphism by OP (−1) we have π∗F ⊗OP (−1)→ OP , whose image

defines an ideal sheaf on P . Now we prove the subvariety defined by the ideal sheaf is

exactly the section D := s(X). To prove this we analyze the image of π∗F → OP (1).

By construction, we have

π∗F �
�

// π∗E // // OP (1)

Fπ(p)
� // ker(qπ(p))

� // Eπ(p)/ ker(qπ(p))

where the diagram above shows the image on each fiber. Then, by definition of the

section s we have that:

p ∈ D := s(X) ⇐⇒ Im((π∗F → OP (1))p) = 0

Thus, the support of the ideal sheaf defined by the morphism π∗F ⊗ OP (−1)→ OP is

exactly the section D. The rank of F is r − 1, which is exactly codimP (D), and then

D is locally a complete intersection because his ideal sheaf ID is locally generated by

r − 1 elements. To conclude we prove the following statement.
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Proposition I.3.28. Let E be a vector bundle of rank r which maps onto an ideal

sheaf ID defining a local complete intersection of codimension r, denoted D. Then the

normal bundle of D is E∨.

Proof. We have a surjection E → ID → 0. If ι : D ↪→ X we can restrict to have

ι∗E → i∗ID → 0

on D. We note that

ι∗ID ∼= ι∗ID ⊗ OD
∼= ι∗ID ⊗ ι∗(OX/ID) ∼= ι∗(ID/I2D)

and this is the conormal sheaf of D. Note that ι∗E, i∗(ID/I2D) are vector bundles of

the same rank r and then the surjection ι∗E → ι∗(ID/I2D) is an isomorphism. Thus,

the normal bundle of D is (ι∗E)∨.

Then, using Proposition I.3.28 we have a surjective map

s∗(π∗F ⊗ OP (−1)) = F ⊗ L∨ ↠ s∗(ID) ∼= N ∨
D/X

because by Proposition I.3.26 we have L = s∗OP (1).

Proposition I.3.29. Let X be a smooth complex projective variety, E
p−→ X be a vector

bundle and P := PX(E) its projective bundle with projection π : P → X. If s : X → P

is a section of π with associated exact sequence 0→ F → E → L→ 0, we have

ND/P
∼= F∨ ⊗ L

The following result allows to calculate normal bundles of some curves inside the blow-

up of a smooth threefold.

Proposition I.3.30. Let C ⊂ Y be a smooth rational curve on a smooth threefold Y

and ε : X → Y the blow-up along C. Let C̃ be a smooth section of the projection

E = P(N ∨
C/Y )→ C associated to the exceptional divisor E. Then

deg(NC/Y ) = C̃2 + 2E · C̃,

and if deg(NC/Y ) ≤ 3C̃2 + 2, the normal bundle of C̃ in X is

NC̃/X
∼= NC̃/E ⊕ (NE/X)|C̃ .
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Proof. We have the exact sequence of normal bundles

0→ NC̃/E︸ ︷︷ ︸
F=

→ NC̃/X →
(
NE/X

)∣∣
C̃︸ ︷︷ ︸

L=

→ 0

and we want to prove this sequence splits. Because L is a line bundle, a well-known

criterion says that the obstruction to the splitting of the exact sequence is an element

lying in H1(X,E⊗L∨), so it is enough to prove the vanishing of this cohomology group.

We calculate the degree of these vector bundles. We have

deg(NC̃/X) = deg(TX|
C̃
/T

C̃
) = deg(KC̃)− deg(KX |C̃) = deg(KC̃)−KX · C̃

deg(NC̃/E) = C̃2

deg(NE/X |C̃) = deg(OX(E)|E) = E · C̃

Because of the additivity of degree in exact sequences, we have

deg(KC̃)−KX · C̃ deg(NC̃/X = deg(NC̃/E) + deg(NE/X |C̃) = C̃2 + E · C̃

Now, by adjunction we have KX = ε∗KY + E, and we obtain

deg(NC/Y ) = deg(KC̃)−KY · C

= deg(KC̃) + E · C̃ −KX · C̃

= C̃2 + 2E · C̃

Then the exact sequence corresponds to

0→ OC̃

(
C̃2
)
→ NC̃/X → OC̃

(
1

2

(
deg

(
NC/Y

)
− C̃2

))
→ 0

Note then that H1(C̃, F ⊗L∨) = 0 if deg(F⊗L∨) ≥ 2g(C)−1 = −1, and thus we obtain

the condition

deg(F ⊗ L∨) = C̃2 − 1

2
deg(

(
NC/Y

)
− C̃2) ≥ −1 ⇐⇒ deg(NC/Y ) ≤ 3C̃2 + 2.

Now, we present an example of a flip, which will be presented in the inverse direction,

i.e., we begin with a variety and a contraction of a positive curve, and performing

different types of birational transformations we arrive to a variety in which the positive

curve is replaced by a negative curve.
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Example I.3.31. We will consider a threefold X and a small contraction X → Y .

We suppose that the resulting variety of the associated flip, denoted by X+, is such

that it contains a rational curve Γ+ ∼= P1 ⊂ X+ whose normal bundle corresponds to

NΓ+/X+ = OP1(−1)⊕OP1(−2). This situation in fact exists. Consider the rank 3 vector

bundle E = OP1 ⊕ OP1(1) ⊕ OP1(2) over P1, and consider π : X+ := PP1(E) → P1 the

associated projective bundle. Proposition I.3.29 implies that the section s : P1 → Γ+ :=

s(P1) ⊂ P(E) associated to the trivial quotient OP1 ⊕ OP1(1) ⊕ OP1(2) → OP1 is as we

want, because its corresponding exact sequence is

0→ OP1(1)⊕ OP1(2)→ OP1 ⊕ OP1(1)⊕ OP1(2)→ OP1 → 0.

We know the canonical divisor of X+ is given by

KX+ = −3ξ + π∗ (KP1 + det(E)) = −3ξ + π∗OP1(1)

where ξ denote the class of OX+(1) and we calculate

det(E) = OP1(1)⊗ OP1(2) = OP1(3).

By projection formula we observe

KX+ · Γ+ = OP1(1) · π∗Γ+ = 1,

so R+[Γ+] is a KX+-positive ray. Moreover, since OX+(1)·Γ+ = 0 have zero intersection,

the morphism associated to the linear system OX+(1) is the contraction of the ray

R+[Γ+]. We will apply some geometrical operations in order to discover what is the

original X.

Step 1. Consider ε1 : X+
1 → X+ the blow-up along Γ+. The exceptional divisor of this

morphism is

S+
1 = P(N ∨

Γ+/X+) = P(OP1(1)⊕ OP1(2)) ∼= P (OP1 ⊕ OP1(1))
def
= F1,

which is known that contains a section E+
1 ⊂ S+

1 such that (E+
1 )2 = −1. Note

that in this case deg(NΓ+/X+) = deg(OP1(−1) ⊕ OP1(−2)) = −3, and the condition

deg(NΓ+/X+) ≤ 3(E+
1 )2 + 2 is verified and Proposition I.3.30 implies6

6Remember F1 is isomorphic to the blow-up Blp(P2) at a point with E+
1 as the exceptional divisor,

so NE+
1 /S+

1

∼= OE+
1
(−1).
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NE+
1 /X+

1

∼= NE+
1 /S+

1
⊕ (NS+

1 /X+
1

)|E+
1

∼= OE+
1

(−1)⊕ OE+
1

(−1)

Step 2. Consider now ε2 : X0 = BlE+
1

(X+
1 ) → X+

1 the blow-up of X+
1 along the curve

E+
1 . In this case the exceptional divisor corresponds to

S0
∼= P(N ∨

E+
1 /X+

1
) = P(OE+

1
(1)⊕ OE+

1
(1)) ∼= P1 × P1

with normal bundle NS0/X0 = OP1×P1(−1,−1). Define the following curves

1. Γ0 will be a fiber of the natural projection S0 → E+
1 .

2. F0 will be the strict transform under ε2 of a fiber of the projection S+
1 → Γ+

3. E+
0 will be the intersection of the strict transform of S+

1 , which we will denote

S̃+
1 , and the exceptional divisor S0.

Consider the entire composition

φ : X0
ε2−→ X+

1
ε1−→ X+ → Y

The key observation is to note that the relative cone of curves NE(φ) = ⟨[Γ0], [F0], [E
+
0 ]⟩

is generated by the previously defined classes, because all of them are contracted by φ,

and they are generators because ρX0 = 4, ρY = 1. Now, we want to prove R+[E+
0 ] is a

KX0-negative extremal ray of X0. Indeed, by adjunction

KX0 · E+
0 = KX+ · Γ+ + S+

1 · E+
1 + S0 · E+

0 = 1 + (−1) + (−1) = −1.

In order to prove R+[E+
0 ] is extremal, we use that [Γ0], [F0], [E

+
0 ] generates NE(φ)

and the fact that the relative cone of curves is an extremal subcone of NE(X0) (see

[Deb01, Proposition 1.14]). If R+[E+
0 ] were not extremal, there exists a, b > 0 such

that [E+
0 ] = a[F0] + b[Γ0]. On one hand, we can intersect with S0 to obtain the relation

−1 = a − b, and on the other hand if we intersect with the strict transform of S+
1 we

have −1 = −a+ b, which is a contradiction.

Step 3. Since R+[E+
0 ] is an extremal ray, we can consider its contraction ψ : X0 →

X1, which we can describe using Mori’s characterization of extremal contractions on

threefolds. In fact, note that E+
0 ,Γ0 are the rulings of the exceptional divisor S0

∼=
P1 × P1, and we already know E+

0 ,Γ0 are not numerically equivalent in X0 and the
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contracted ray R+[E+
0 ] is not numerically effective because S0 · E+

0 = −1. By [IP99,

Theorem 1.4.3], this contraction is divisorial, so the exceptional locus corresponds to the

divisor S0, but the ruling Γ0 is not contracted so it has to be an (E1) type contraction.

The previous fact implies that X1 is a smooth threefold, ψ(S0) is a smooth curve and

ψ is nothing more than the blow-up of X1 along ψ(S0) =: Γ1.

We can also calculate the normal bundle of Γ1 into X1. The proof of Proposition I.3.30

gives us a formula for the degree of NΓ1/X1 , and we obtain

deg(NΓ1/X1) = Γ2
0︸︷︷︸

=0

+2S0 · Γ0︸ ︷︷ ︸
=−1

= −2

and because we have characterized the contraction ψ as the blow-up of Γ1, we know

that

P(OP1(−1)⊕ OP1(−1)) ∼= S0
∼= P(NΓ1/X1),

so NΓ1/X1 corresponds to OP1(−1)⊕OP1(−1) twisted by a certain line bundle over P1,

but since its degree is exactly 2, we conclude

NΓ1/X1
∼= OP1(−1)⊕ OP1(−1).

In the following we calculate the normal bundle NS1/X1 . Note that the ruled surface

S̃+
1
∼= F1 gets blow-down onto a projective plane under ψ, because it is just the con-

traction of E+
0 , which corresponds to the exceptional curve of S̃+

1 . More precisely,

S1 := ψ(S̃+
1 ) ∼= P2.

Now we calculate NS1/X1 . Since S1
∼= P1, it is enough to calculate the degree of the

restriction NS1/X1|ℓ, where ℓ ∼= P1 ⊂ S1 is a line that doesn’t pass through the point

ψ(E+
0 ). Note first that

deg(NS1/X1 |ℓ) = S1 · ℓ = S̃+
1 · ℓ = deg(N

S̃+
1 /X0
|ℓ),

where we also denote by ℓ a line in S̃+
1 that it doesn’t intersect E+

1 . This implies that

he calculation of deg(NS1/X1 |ℓ) can be carried out in X0, and moreover, since S̃+
1 is

nothing more than the strict transform of S+
1 ⊂ X1, the calculation can be done in X+

1 .

In light of the above, we consider a line ℓ ⊂ S+
1 such that does not intersect E+

1 .

We claim that ℓ is a section the P1-bundle S+
1 → Γ+. In order to prove this, we

recall that S+
1
∼= F1, and we know the intersection theory on this surface. We have

Pic(F1) = Z[ξ]⊕ Z[f ], where ξ is the class of a section and f is the class of a fiber (see
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[Bea83, Proposition IV.1]), and E+
1 = ξ − f . If we write ℓ = aξ + bf or some a, b ∈ Z,

we compute 0 = E+
1 · ℓ = b, i.e., ℓ is in fact a section. By Proposition I.3.30, we obtain

that

deg(NS1/X1) = deg(NS+
1 /X1
|ℓ) =

1

2
(deg(NΓ+/X+)− ℓ2) =

1

2
(−3− 1) = −2.

From the previous calculation we obtain NS1/X1
∼= OS1(−2). Via adjunction formula

we can use the previous computation to derive

KX1|S1
∼= KS1 ⊗ det(N ∨

S1/X1
) = OS1(−3)⊗ OS1(2) = OS1(−1).

Step 4. From the last calculation follows that, if ℓ1 ∼= P1 ⊂ S1 is a line disjoint from

Γ1, we have KX1 · ℓ1 = deg(KX1|ℓ1) = −1 and we consider its contraction c : X1 → X.

By [IP99, Theorem 1.4.3] its contraction is of type (E5), and this means that S1 is

contracted to a quotient singularity, which is locally analytically isomorphic to the

quotient of A3 by the involution (x, y, z) 7→ (−x,−y − z).

Now we can prove KX is not Cartier. Write KX1 = c∗KX + aS1 for some a ∈ Q. If we

restrict to S1 we obtain

−H = KX1 |S1 = c∗KX |S1︸ ︷︷ ︸
=0

+aS1|S1 = −2aH ⇒ a = −1

2

where H denotes the ample generator of Pic(S1), so

KX · c(Γ1) = c∗KX · Γ1 = KX1 · Γ1︸ ︷︷ ︸
=0

−1

2
S1 · Γ1︸ ︷︷ ︸

=1

= −1

2
.

This calculation also proves R+[c(Γ1)] is a KX-negative ray, and in fact it is extremal.

Then we can perform the contraction of the ray R+[c(Γ1)], which results to be a small

contraction. The map X+ → Y correspond to a flip of this contraction, and its effect

is to replace the KX-negative curve c(Γ1) by the KX+-positive curve Γ+.

The following picture summarizes the complete procedure.
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X+
1

S+
1

E+
1

X1

X X+ Γ+ ∼= P1

ε1
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ℓ

Γ1

ψ

c(Γ1)

c

S̃+
1

E+
0S0

Γ0

F 0

I.4 Singularities of the MMP

In the last section we discovered that study singularities is inevitable to the MMP. The

aim of this section is to present some general definitions and facts about the singularities

that can be appear when we run the MMP.

I.4.1 Log pairs and log discrepancies

Definition I.4.1. Let X be a variety and let f : Y → X be a proper, birational

morphism with Y normal. In particular we have an isomorphism k(Y ) ∼= k(X) of k-

extensions given by the pullback of rational functions, and for a prime divisor E ⊂ Y

the local ring OY,E (which is the stalk at the generic point of E) is a DVR (discrete
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valuation ring) of k(Y ), and by the identification above it is also a DVR of k(X). If

Y1 → X, Y2 → X are two proper, birational morphisms to X, we identify prime divisors

E1 ⊂ Y1, E2 ⊂ Y2 if they give the same DVR of k(X), and an equivalence class of such

divisors is called a divisor over X.7

The following definition contains fundamental concepts related to resolutions of singu-

larities.

Definition I.4.2. Let X be a normal variety. A divisor D on X is simple normal

crossing (abbreviated snc) if X is smooth and at each p ∈ Supp(D) there exists

local coordinates x1, . . . , xn such that D is locally defined at p by x1 · . . . · xr for some

1 ≤ r ≤ n.

A log resolution of (X,D) where D is a Q-divisor on X is a proper birational morphism

f : Y → X such that

1. Y is smooth.

2. Exc(f) is pure codimension 1.

3. Exc(f) ∪ Supp(f−1
∗ (D)) is snc.

The existence of log resolutions in characteristic 0 is a celebrated result due to Hironaka.

Now, since our focus lies on the study of singular varieties, it becomes essential to

extend the notion of a canonical divisor to this broader context.

Definition I.4.3. Let X be a normal variety. A canonical divisor on X is a divisor

KX such that

ωU
∼= ωU(KX |U)

where U = Xreg denotes the smooth locus of X. This notion is well-defined because,

due to the normality of X, codimX(X\U) ≥ 2, ensuring that any two canonical divisors

on X are linearly equivalent.

Lemma I.4.4. Let f : Y → X be a proper birational morphism between normal vari-

eties, and let KY be a canonical divisor on Y . Then f∗KY is a canonical divisor on

X.

7If f : Y → X is a proper, birational morphism and E ⊂ Y is a prime divisor, we say that f extracts

the divisor E.
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Proof. Let Exc(f) ⊂ Y be the exceptional locus of f , and consider the restriction

V := Y \ Exc(f)→ U := X \ Exc(f) of the morphism f . This is an isomorphism and

then f∗(KY )|U is a canonical divisor on X. Because f is birational, codimX(U) ≥ 2,

and by normality of X, we have that f∗KY is a canonical divisor.

Warning. Whenever we are in the setting of the previous lemma, we will assume that

KX , KY are canonical divisors such that KX = f∗KY .

Definition I.4.5. Let f : Y → X be a proper birational morphism of normal varieties,

and assume that KX is Q-Cartier. The relative canonical divisor of f is

KY/X := KY − f ∗KX

Remark I.4.6. Because KX is chosen such that KX = f∗KY , we have f∗KY/X = 0,

i.e., KY/X is an exceptional divisor.

Example I.4.7. If X is a smooth projective variety and Z ⊂ X is a smooth subvariety

of codimension r = codimX(Z) ≥ 2, the relative canonical divisor of the blow-up

X̃ = BlZ(X) is

KX̃/X = (r − 1)E,

where E is the exceptional divisor.

To carry out the purposes of the MMP, we must be more flexible with the use of

canonical divisor, and for this reason is introduced the notion of a log pair.

Definition I.4.8. Let X be a normal variety. We say that (X,∆) is a log pair if ∆ is

a Q-divisor such that KX + ∆ is Q-Cartier.

Now, consider (X,∆) a log pair, f : Y → X a birational proper morphism with Y

normal and ∆Y a divisor on Y such that

KY + ∆Y = f ∗(KX + ∆)

This divisor is independent of KX because f∗(∆Y ) = ∆. This means that for a prime

divisor F on X, its coefficient on ∆ is the same that the coefficient of its strict transform

F̃ on ∆Y . Note that by definition this coefficient doesn’t depend on f , it is a quantity

associated to a divisor over X. This is the reason why the following definition makes

sense.
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Definition I.4.9 (log discrepancy). Let (X,∆) be a log pair. For every birational

proper morphism f : Y → X with Y normal, we can consider a divisor ∆Y on Y such

that

KY + ∆Y = f ∗(KX + ∆)

The log discrepancy of a prime divisor E ⊂ Y extracted by f , with respect to the pair

(X,∆) is

A(X,∆)(E) := 1− (the coefficient of E in ∆Y ).

Example I.4.10. Consider a log pair (X,∆).

1. If ∆ = 0, by definition we have ∆Y = −KY/X . In this case log discrepancy is

simply AX(E) = 1 + coeffE(KY/X).

2. If f : Y → X, g : Z → Y are proper birational morphisms, we can choose

canonical divisors KY , KZ such that f∗(KY ) = KX and (f ◦ g)∗(KZ) = KY ,

and then follows g∗(KZ) = KY (because of the uniqueness of a divisor with this

property). If we pullback the relation KY = f ∗KX +KY/X we have

KZ = g∗KY +KZ/Y = (f ◦ g)∗KX + g∗KY/X +KZ/Y

and we obtain the formula

KZ/X
def
= KZ − (f ◦ g)∗KX = g∗KY/X +KZ/Y .

Definition I.4.11. Let (X,∆) be a pair where X is a normal variety and ∆ =
∑
aiDi

is a sum of distinct prime divisors with ai ∈ Q such that m(KX + ∆) is Cartier for

some m > 0. We say that (X,∆) is

1. Kawamata log terminal (klt) if A(X,∆)(E) > 0 for all E divisor over X.

2. purely log terminal (plt) if A(X,∆)

3. log canonical (lc) if A(X,∆)(E) ≥ 0 for all E divisor over X.

We say X is klt (resp. lc) if the log pair (X, 0) is klt (resp. lc).

Remark I.4.12. There is more classes of log pairs that are useful in the context of

MMP, but here we will also consider the introduced ones. Between these classes, log

canonical is the largest one. The interested reader can consult [KM98].
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The following theorem simplifies the very definition of klt and lc.

Theorem I.4.13. If (X,∆) is a log pair and f : Y → X is a log resolution of (X,∆),

then (X,∆) is lc (resp. klt) if and only if all coefficients of ∆Y ≤ 1 (resp. < 1).

I.4.2 Log canonical thresholds

In this section we introduce a notion that it will be very useful in Chapter III. We have

already introduced the lc class of log pairs, which can be thought as a measure of how

singular a variety is. With this sight, it is natural to consider the threshold of a pair

for belonging to this class.

Definition I.4.14. Let X be a klt variety. The log canonical threshold (or simply lct)

of an effective Q-Cartier Q-divisor ∆ on X is

lct(X,∆) := sup{λ ∈ Q≥0 : (X,λ∆) is lc}

Remark I.4.15. The lct of a pair (X,∆) is always positive. In fact, if f : Y → X is a

resolution of singularities of (X,∆), since X is klt the divisor KY/X
def
= KY − f ∗KX has

coefficients > −1. Hence, for 0 < c≪ 1, the divisor KY −f ∗(KX−λ∆) has coefficients

≥ −1, and then (X,λ∆) is lc.

We present some worked examples involving classical resolutions of singularities.

Example I.4.16.

1. Consider ∆ = V (P ) where P ∈ k[x1, . . . , xn] is a homogeneous polynomial of

degree d such that D has an isolated singularity at the origin. Consider the log

pair (An, λ∆) and let f : Y → An be the blow-up of the origin. We have the

exceptional divisor E ∼= Pn−1 and the strict transform ∆̃ of the hypersurface ∆.

Note that

∆̃ ∩ E ⊂ E ∼= Pn−1

corresponds to the hypersurface in Pn−1 defined by P and then ∆̃ is smooth and

intersects E transversely. Thus, f is a log resolution of (An, λ∆) and we calculate

(λ∆)Y = λf ∗(∆)−KY/An = λ(∆̃ + dE)− (n− 1)E = λ∆̃ + (λd− n+ 1)E

and then we have lct(An,∆) = min{1, n/d}.
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2. Take the pair (X,λ∆) = (A2, λ∆) with ∆ = {Y 2 − X2(X + 1) = 0} the nodal

curve. To solve the singularity at (0, 0) we do the blow-up of the origin ε : X̃
def
=

Bl0(X)→ X and we calculate the pullback ε∗∆.

We have the blow-up coordinates

X̃ = {((x, y), [u, v]) ∈ A2 × P1 : xv = yu}

ad in the affine chart {u ̸= 0} we have coordinates (x, v) with the relations

x = u, y = xv and the exceptional divisor corresponds to E
loc
= {x = 0}. Here we

compute

ε−1(∆) = {(x, v) ∈ A2 : x2v2−x2(x+1) = x2(v2−x−1) = 0} and then ε∗∆ = ∆̃+2E.

Note that the strict transform ∆̃
loc
= {(x, v) ∈ A2 : v2 = 1 + x} intersects trans-

versely with E, so ε is a resolution of singularities of the pair. Since KX = 0,

KX̃ = E, we have ∆Y = ∆̃ + E and

(X,λ∆) is lc ⇐⇒ 1− λ ≥ 0

and then lct(X,∆) = 1. Geometrically this resolution looks like the following

picture

∆

ε

E

∆̃

3. We will consider the log pair (X,λ∆) = (A2, λ∆) where ∆ = {Y 2 + X3 = 0}
is the cuspidal cubic. In order to obtain a resolution we perform a blow-up

ε1 : X1
def
= Bl0(X)→ X at the origin and we will calculate the pullback ε∗1∆.

Explicitly, the blow-up is given by

X1 = {((x, y), [x1, y1]) ∈ A2 × P1 : xy1 = x1y}
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In the affine chart {y1 ̸= 0}, we have the set of coordinates (x1, y) given by

the relations x = x1y, y = y1 and locally the exceptional divisor is given by

E3
loc
= {y = 0}, so

ε−1
1 (∆) = {(x1, y) ∈ A2 : y2(x21 + y) = 0} and then ε∗1∆ = ∆1 + 2E3.

where ∆1 denotes the strict transform of ∆, and in the chosen affine chart is given

by the equation ∆1 = {(x1, y) ∈ A2 : x21 + y = 0}. Thus the strict transform is a

parabola that intersects the exceptional divisor E3, so this resolution is not simple

normal crossings. We perform a second blow-up ε2 : X2 → X1 at the intersection

point of ∆1 and E3. Locally the blow-up looks like

X2
loc
= {((x1, y), [x2, y2]) ∈ A2 × P1 : x1y2 = yx2},

and in the affine chart {x2 ̸= 0} we have coordinates (x1, y2) such that x1 =

x2, y = x1y2. In this coordinate system the exceptional divisor is F2 = {x1 = 0}
and we calculate:

ε−1
2 (∆1)

loc
= {(x1, y2) ∈ A2 : x1(x1 + y2) = 0} and then ε∗2(∆1) = ∆2 + F2

where ∆2 = {(x1, y2) ∈ A2 : x1 + y2 = 0}. We also have to calculate the pullback

of E3, which results

ε−1
2 (E3)

loc
= {(x1, y2) ∈ A2 : x1y2 = 0} and then ε∗2(E3) = F3 + F2

where F3
loc
= {y2 = 0} is the strict transform of E3 in X2. In this case we obtain

a triple intersection point of three lines, so we have to perform a third blow-up

ε3 : X3 → X2 at this point, and again the blow-up is locally given by

X3
loc
= {((x1, y2), [x3, y3]) ∈ A2 × P1 : x1y3 = y2x3}

Using the chart {x3 ̸= 0} we have coordinates (x1, y3) such that x1 = x3, y2 = x1y3,

and exceptional divisor G1 = {x1 = 0}. This description gives us

ε−1
3 (∆2)

loc
= {(x1, y3) ∈ A2 : x1(y3 + 1) = 0} and then ε∗3(∆2) = ∆3 +G1

where ∆3 = {(x1, y3) ∈ A2 : y3 + 1 = 0} corresponds to the strict transform of

∆2 under ε3. In a similar fashion to what was done previously we calculate the

pullbacks of F3, F2. It results

ε−1
3 (F3)

loc
= {(x1, y3) ∈ A2 : x1y3 = 0} then ε∗3(F3) = G3 +G1

ε−1
3 (F2)

loc
= {(x1, y3) ∈ A2 : x1 = 0}
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where G3 = {y3 = 0} is the strict transform of F3 in X3 respectively.

Note that we didn’t obtain equations for the strict transform of F2 in ε∗3(F2), so

we have to look for in the chart {y3 ̸= 0} of X3. In this case we have coordinates

(x3, y2) with relations x1 = x3y2, y2 = y3 and exceptional divisor G1
loc
= {y2 = 0}.

Now we have

ε−1
3 (F2)

loc
= {(x3, y2) ∈ A2 : x3y2 = 0} and then ε∗3(F2) = G2 +G1

where G2 = {x3 = 0} is the strict transform of F2. Finally we have arrived to a

simple normal crossings configuration.

Denoting by ε = ε3 ◦ ε2 ◦ ε1 the composition of the three blow-ups, we obtain

ε∗(∆) = ε∗3(∆2) + 3ε∗3(F2) + 2ε∗3F3

= ∆3 + 6G1 + 3G2 + 2G3

Now using a previous example we calculate the relative canonical divisors

KX1/X
def
= KX1 −����ε∗1(KX) = E3

KX2/X1

def
= KX2 − ε∗1(KX1) = F2

KX3/X2

def
= KX3 − ε∗1(KX2) = G1

KX2/X = ε∗2(KX1/X) +KX2/X1 = 2F2 + F3

KX3/X = ε∗3(KX2/X) +KX3/X2 = G3 + 2G2 + 4G1

Thus we can compute the divisor ∆X3 in the definition of log discrepancy, obtain-

ing

∆X3

def
= λε∗∆−KX3/X

= λ(∆ + 2G3 + 3G2 + 6G1)− (G3 − 2G2 − 4G3)

= λ∆ + (2c− 1)G3 + (3c− 2)G2 + (6c− 4)G3.

This computation says that

(X,λ∆) is lc ⇐⇒ 2λ− 1 ≤ 1, 3λ− 2 ≤ 1, 6λ− 4 ≤ 1

Thus we conclude lct(X,∆) = 5/6. The big picture of this situation is illustrated

in the following drawing.
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I.5 Volumes of divisors

We now turn to study a notion used to measure the idea of positivity of line bundles or

divisors. This idea, that comes from the differential geometry side and is highly related

to the positivity of the Chern class c1(L) of a line bundle (hence the name), it is also

related to the existence of sections of L, and therefore with classical algebraic geometry

questions. The notion of volume measures the asymptotic growth of sections of a line

bundle, and it will be turn relevant when we discuss about the valuative criterion of

K-stability in Chapter III. In this section we introduce the notion of volume and a

geometric way to think about it.

I.5.1 Definition of volume

In this section we define and summarize the principal properties of volume of a big

divisor. This section is extracted mainly from [Laz04].

Definition I.5.1. Let X be an irreducible projective variety of dimension n and L ∈
Pic(X) a line bundle on X. The volume of the line bundle is defined as

vol(L) = volX(L) = lim sup
m→∞

h0 (X,L⊗m)

mn/n!
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The volume vol(D) = volX(D) of a Cartier divisor is the volume of OX(D).

Remark I.5.2.

1. Note that vol(L) is positive if and only if L is big. Moreover, if L is big and nef

by an asymptotic version of Riemann-Roch (view [Laz04, Corollary 1.4.41]) we

have that vol(L) = Ln is the top self-intersection.

2. For a positive integer a > 0,

vol(aD) = an vol(D)

where n is the dimension of the variety.

3. The definition of volume also makes sense for Q-Cartier divisors. In fact, if D is

Q-Cartier we can take a > 0 such that aD is Cartier and define

vol(D) =
1

an
vol(aD)

which is independent of a by the previous observation.

The next proposition corresponds to [Laz04, Proposition 2.2.41].

Proposition I.5.3. If D,D′ are numerically equivalent Cartier divisors on X then

vol(D) = vol(D′). Thus, it makes sense to take the volume of a class in N1(X)Q, and

the set of classes of big Q-divisors in N1(X)R spans a convex cone.

Theorem I.5.4 ([Laz04, Theorem 2.2.44]). The function vol : N1(X)Q → R, ξ 7→
vol(ξ) extends uniquely to a continuous function vol : N1(X)R → R.

To finish this part we present a brief review of [Laz04, §2.3.E] in which is presented a

method in surfaces used to extract the components of a divisor in which the volume is

concentrated. It will be relevant in the next section and at the final of the Chapter III.

Theorem I.5.5 (Zariski decomposition, [Laz04, Theorem 2.3.19]). Let X be a smooth

projective surface and let D be a pseudo-effective integral divisor. Then, it exists a

unique decomposition D = P + N for P,N two Q-divisors (called the positive and

negative part of D, repectively) with the following properties:

1. P is nef.
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2. N =
∑
aiEi is effective and if N ̸= 0 its intersection matrix A = (∥Ei ·Ej∥)i,j is

negative definite.

3. P is orthogonal to any component of N , i.e., P · Ei = 0 for all i.

In addition, the volume of D can be calculated as vol(D) = P 2.

I.5.2 Newton-Okounkov bodies

To finish this chapter we comment a construction due to A. Okounkov following [LM09],

which gives a geometric way to calculate volumes of divisors. The idea is to attach a

convex body to a line bundle in such a way that the volume of the line bundle coincides

with the volume of that convex body. We review this construction and as an example

we will focus in the case of surfaces.

Construction I.5.6. Let X be a smooth projective variety and take an admissible flag

in X, i.e., a sequence of closed subvarieties

Y• : X = Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · ⊇ Yn−1 ⊇ Yn = {p}

with codimX(Yi) = i. Let D be a divisor on X, s = s1 ∈ H0(X,OX(D)) a global

section and D1 = div(s1) its effective divisor in the linear system |D|. If we define

ν1(s) = ordY1(D1) as the multiplicity of Y1 along D1, D1−ν1(s)Y1 is an effective divisor

whose support does not contain Y1, so we can define D2 = (D1 − ν1(s)Y1)|Y1 , and take

ν2(s) = ordY2(D2). Inductively, we define νY•(s) = (ν1(s), . . . , νn(s)) and moreover we

have constructed a function

νY• : H0(X,OX(D))→ Zn, s 7→ νY•(s).

The graded semigroup of D is the sub-semigroup

ΓY•(D) =
{

(νY•(s),m) | 0 ̸= s ∈ H0 (X,OX(mD)) ,m ≥ 0
}

of Nn × N, and we define the Newton-Okounkov body of D with respect to Y• as

∆Y•(D) = cone (ΓY•(D)) ∩ (Rn × {1}) ,

where cone(ΓY•(D)) is the closed convex cone in Rn × R spanned by ΓY•(D).
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Theorem I.5.7 ([LM09, Theorem A]). If D is a big divisor on X, then

volRn(∆Y•(D)) =
1

n!
· volX(D).

Example I.5.8.

1. As an illustration we will consider the projective plane S = P2 and the flag

Y• : S ⊃ Y1 := V (X) ⊃ Y2 = [0, 0, 1]. We will construct the Newton-Okounkov

body of each line bundle OS(d).

First of all we take the line bundle L = OS(2). In this case we have the global

sections H0(S, L) = ⟨X2, Y 2, Z2, XY,XZ, Y Z⟩ and we calculate explictly ν•(Y
2)

and ν•(XZ). Taking s1 = Y 2, we have

D1 = div(Y 2) = 2V (Y ) and by definition ν1(y
2) = ordY1(D1) = 0.

Then following the construction we directly compute

D2 = D1|Y1 = 2Y2 so ν2(Y2) = ordY2(D2) = 2 and νY•(y2) = (0, 2).

Similarly, for s1 = XZ we have

D1 = div(XZ) = Y1 + V (Z) and D2 = V (Z)|Y1 = [0, 1, 0].

This means νY•(XZ) = (1, 0) and for the other sections we have

νY•(X2) = (2, 0), νY•(Z2) = (0, 0), νY•(XY ) = (1, 1), νY•(Y Z) = (0, 1)

Following this logic it follows directly that for any d ∈ N≥1 we have that the

associated function to L = OX(d) is the lexicographic valuation on monomials

gave by νY•(XaY bZc) = (a, b). The Newton-Okounkov body of L corresponds

simply to

Xd

Y d
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which in effect calculates the volume of L.

2. More generally, if we consider X = Pn with homogeneous coordinates X0, . . . , Xn

and the flag Y• given by Yi = V (X0, . . . , Xi−1), the associated map corresponds

to the lexicographic valuation on monomials given by

νY•(Xa0
0 · · ·X

an−1

n−1 X
an
n ) = (a0, . . . , an−1)

There exists a global convex body associated to a variety, which track the information

of all Newton-Okounkov bodies. The following is a first result in this direction.

Proposition I.5.9 ([LM09, Proposition 4.1]). Let X be an irreducible projective vari-

ety, and let D be a big divisor. For a fixed admissible flag Y• on X, the following is

verified.

1. If D ≡
num

D′ are numerically equivalent, then ∆Y•(D) = ∆Y•(D′).

2. For any integer p > 0, ∆Y•(pD) = p · ∆Y•(D) where p · ∆Y•(D) denotes the

homotetic image of ∆Y•(D) under scaling.

The previous Proposition permits to define the Newton-Okounkov body ∆Y•(ξ) of a big

rational class ξ ∈ Big(X)∩N1(X)Q. The next theorem asserts the existence of a global

Newton-Okounkov body.

Theorem I.5.10 ([LM09, Theorem 4.5]). There exists a closed convex cone ∆Y•(X) ⊂
Rn × N1(X)R such that for any ξ ∈ Big∩N1(X)Q we have pr2

−1(ξ) ∩ ∆Y• = ∆Y•(ξ),

where pr2 : Rn×N1(X)R → N1(X)R denotes the projection onto the second coordinate.

Now we introduce the notion of restricted volume, which is highly related to Newton-

Okounkov bodies.

Definition I.5.11. Let X be a smooth projective variety, L ∈ Pic(X) a line bundle,

F ⊂ X a subvariety of dimension d, and define

H0(X | F,L) := Im
(
H0(X,L) −→ H0 (X, L|F )

)
.

The restricted volume of L along F is

volX|F (L) = lim sup
m→∞

h0(X | F,mL)

md/d!
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Remark I.5.12. If D is big and nef, then volX|F (D) = (Dd · F ).

Theorem I.5.13 ([LM09, Theorem 4.26, Corollary 4.27]). Let X be a normal projective

variety of dimension n, let F ⊂ X be an irreducible and reduced Cartier divisor and fix

an admissible flag

Y• : X = Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · ⊇ Yn−1 ⊇ Yn = {p}

with Y1 = F . Let ξ ∈ Big(X)Q be a big rational class with Newton-Okounkov body

∆Y•(ξ) ⊂ Rn. For the projection pr1 : ∆Y•(ξ)→ R we set

∆Y•(η)ν1=t = pr−1
1 (t) ⊆ {t} × Rn−1

∆Y•(η)ν1≥t = pr−1
1 ([t,+∞)) ⊆ Rn

and τF (ξ) = sup{s > 0 | ξ − s · f ∈ Big(X)} where f is the numerical class of F . For

any t ∈ R with 0 ≤ t ≤ τF (ξ) we have

1. ∆Y•(ξ)ν1≥t = ∆Y•(ξ − tf) + t · e⃗1 where e⃗1 = (1, 0, . . . , 0).

2. ∆Y•(ξ)ν1=t = ∆X|F (ξ − tf).

The following theorem gives a very useful description of the Newton-Okounkov body

on surfaces that it will be used in Chapter III.

Theorem I.5.14. Let S be a smooth projective surface and let Y• : Y0 = S ⊃ Y1 =

C ⊃ Y2 = {p} be an admissible flag with C ⊂ S an smooth curve through p ∈ S. A big

Q-divisor D on S has a Zariski decomposition D = P (D) +N(D) with P (D) being nef

and N(D) being either zero or effective with negative definite intersection matrix. The

Newton-Okounkov body of D is given by

∆Y•(D) =
{

(t, y) ∈ R2 | ν ≤ t ≤ τC(D), α(t) ≤ y ≤ β(t)
}

where D − tC = Pt +Nt is the Zariski decomposition, and

1. ν ∈ Q is the coefficient of C in N(D),

2. τC(D) = sup{t > 0 : D − tC is big},

3. α(t) = ordp(Nt · C),

4. β(t) = ordp(Nt · C) + Pt · C.

Remark I.5.15. The Newton-Okounkov body of a divisor could be non-polyhedral.

An example of this phenomena is given in [LM09, §6.3].
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Fano varieties

In this chapter we present main facts about Fano varieties and their classification. The

principal idea is to introduce the ∆-genus theory of Takao Fujita, which permited to

classify polarized varieties in terms of numerical invariants. In particular, we’ll obtain

the classification of Fano varieties of large index.

II.1 General properties of Fano varieties

We start recalling the definition of a Fano variety.

Definition II.1.1. A Fano variety is a smooth complex projective variety X such that

its anticanonical divisor −KX is ample.

Remark II.1.2. As we assume in the previous definition, a Fano variety is usually

defined as a smooth variety. A singular normal projective variety X whose anticanonical

divisor is an ample Q-Cartier Q-divisor is usually called a singular Fano variety. It is

also very common to specify the type of singularities that X has in its name (for

example, a klt Fano variety).

Example II.1.3.

1. The unique Fano curve is the projective line P1.

2. Two-dimensional Fano varieties are the so-called del Pezzo surfaces, which are

characterized below.
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3. If X = Xd1,...,dr ⊂ Pn is a smooth complete intersection of degrees d1, . . . , dr

(i.e., X = V (f1, . . . , fr) where deg(fi) = di), X is a Fano variety if and only if∑r
i=1 di ≤ n. This characterization follows from the adjunction formula because

ω∨
X = OX(−KX) = OX

(
n+ 1−

r∑
i=1

di

)
.

Proposition II.1.4. Let X be a Fano variety. Then

1. H i(X,OX) = 0 ∀i > 0.

2. Pic(X) is a finitely generated torsion-free Z-module and Pic(X) ∼= H2(X,Z).

3. κ(X) = −∞.

Proof. Assertion 1. is due to Kodaira vanishing theorem (view [Laz04, Theorem 4.2.1]),

noting that H i(X,OX) = H i(X,KX −KX) = 0 ∀i > 0, and asssertion 3. is simply the

observation that any power of KX has no sections because of the ampleness of −KX .

Now we prove 2. From the exponential sheaf exact sequence

0 −→ Z −→ OX
exp−−→ O∗

X −→ 0,

we have the exact sequence

0 = H1(X,OX)→ H1(X,O∗
X)→ H2(X,Z)→ H2(X,OX) = 0,

where the vanishing comes from 1., and we obtain

Pic(X) ∼= H1(X,O∗
X) ∼= H2(X,Z),

where the first isomorphism is well-known. This implies Pic(X) is finitely generated.

We prove now Pic(X) is torsion-free, and note first that torsion-free elements are nu-

merically trivial. Let D ≡
num

0 be a numerically trivial divisor and by Nakai-Moishezon

criterion −KX +D is ample. Kodaira vanishing theorem shows that

H i(X,D) = H i(X,KX + (−KX +D)) = 0 ∀i > 0.

As D ≡
num

0, it follows that χ(X,OX(D)) = χ(X,OX) = 1 and H0(X,D) = Cs for

some section s. Then H0(X,nD) = Csn for any n ∈ N and if s is non-constant, D is a

non-torsion element. Thus, if D is a torsion element its unique section is constant, and

then D ∼ 0.
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Now we present the characterization of de del Pezzo surfaces.

Proposition II.1.5. Let X be a smooth del Pezzo surface. Then X is isomorphic to

the blow-up of projective plane P2 at r points in general position1 where 0 ≤ r ≤ 8, or

it is X ∼= P1 × P1.

Proof. Let X be a smooth del Pezzo surface. If X is not a minimal surface (in which

case there exists a curve E ⊂ X such that E ∼= P1 and E2 = −1) by Castelnuovo’s

contractibility criterion (see [Bea83, Theorem II.17]) there exists a unique morphism

φ : X → Y such that Y is smooth, Exc(φ) = E and φ(E) = {pt}, i.e., we have

KX = φ∗KY + E. Since −KX is ample, by projection formula we calculate

(−KY )2 = K2
Y = (φ∗KY )2 = (KX − E)2

= K2
X − 2KX · E + E2

= K2
X − 2 · (−1)− 1

= K2
X + 1 > 0,

and if C ⊂ X is an irreducible curve different from E,

(−KY ) · φ∗C = φ∗ (−KY ) · C = (−KX + E) · C = −KX · C + E · C > 0,

so by Nakai-Moishezon criterion −KY is an ample divisor. This argument shows that

we can suppose X is a minimal del Pezzo surface.

Let X be a minimal del Pezzo surface, and we claim X is rational. First, we note that

P2(X)
def
= h0(X, 2KX) = 0, because if D ≥ 0 is an effective divisor such that D ∼ 2KX

by Nakai-Moishezon criterion −KX ·D > 0, but we also have −KX ·D = −2K2
X ≤ 0,

a contradiction. Second, the irregularity is q(X)
def
= h1(X,OX) = 0 (Proposition II.1.4),

and then X is rational because of Castelnuovo’s rationality criterion ([Bea83, Theorem

V.1]).

Classification of minimal rational surfaces ([Bea83, Theorem V.10]) implies that X is,

either the projective plane P2, or a Hirzebruch surface Fn
def
= P(OP1 ⊕ OP1(n)), n ̸= 1.

Suppose X ∼= Fn for some n ∈ Z. This surface contains a rational curve Sn
∼= P1 such

that S2
n = −n ([Bea83, Theorem IV.1]), and then genus formula gives

2g(Sn)− 2 = S2
n +KX · Sn and thus −KX · Sn = 2− n,

1This condition means there are no three collinear points, there are no six points lying in a conic,

and there are no 8 points lying on a cubic with one of them being a double point.
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and the ampleness of −KX forces that n = 0, so X ∼= P1 × P1.

Remember that P1 × P1 is isomorphic to the blow-up of P2 at two points, so any non-

minimal del Pezzo surface can be obtained as the blow-up of P2 at r points. Note

that

9 = (−KP2)2 = (−KX)2 + r

and then 0 ≤ r ≤ 8.

Definition II.1.6. Let X be a Fano variety. By the previous Proposition there exists

the greatest rational number r = ι(X) > 0 such that −KX = rH where H is an ample

Cartier divisor. The number r is called the index of X and the divisor H is called a

fundamental divisor.

Lemma II.1.7. Let X be a Fano variety of dimension n. Then the index ι(X) satisfies

the bound ι(X) ≤ n+ 1.

Proof. By bend-and-break lemma X contains a rational curve C such that

ι(X) ≤ −KX · C ≤ n+ 1.

II.2 Classification of Fano varieties

II.2.1 Definition of ∆-genus

In this section we will introduce the concept of ∆-genus defined by T. Fujita in [Fuj75].

We will present some basic properties and we will illustrate his method of classification

using ladders. The main idea of T. Fujita is to consider projective varieties with a

chosen polarization.

Definition II.2.1 (sectional and ∆-genus). Let (X,H) be a polarized algebraic variety,

i.e., H ∈ Pic(X) is an ample line bundle. Consider the Hilbert polynomial

χ(X, tH) =
n∑

j=0

χj(X, tH)t[j]/j! where t[j] :=
(t+ j − 1)!

(t− 1)!
.

We define the degree of H as d := χn(X, tH) and the sectional genus as g(X,H) := 1−
χn−1(X, tH). The ∆-genus of (X,H) is defined as ∆(X,H) := dim(X) +d−h0(X,H).
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Lemma II.2.2. Let (X,H) be a polarized algebraic variety and let D ∈ |L| be an

irreducible and reduced member. Then χj+1(X,H) = χj(D,H|D) for every j ≥ 0.

Proof. The exact sequence

0→ OX((t− 1)H)→ OX(tH)→ OD(tH|D)→ 0

gives the equality χ(D, tH) = χ(X, tH) − χ(X, (t − 1)H). Comparing the coefficients

shows χj+1(X,H) = χj(D,H|D).

The following lemma justifies the name sectional genus.

Lemma II.2.3. Let (X,H) be a polarized algebraic variety and let D ∈ |L| be an

irreducible and reduced member.

1. If dim(X) = 1, g(X,H) = h1(X,OX).

2. g(D,H|D) = g(X,H).

3. 2g(X,H)− 2 = (KX + (n− 1)H) ·Hn−1.

Proof.

1. By Riemann-Roch theorem for curves, χ(X, tH) = χ(X,OX)+t deg(H), and then

g(X,H) = 1− χ0(X, tH) = 1− χ(X,OX) = h1(X,OX).

2. This is a direct consequence of the previous Lemma.

3. This formula can be obtained from a more precise version of Riemann-Roch the-

orem (see [BHJ17, Theorem A.1]).

Proposition II.2.4. Let (X,H) be a polarized algebraic variety and let D ∈ |L| be
an irreducible and reduced member. Then 0 ≤ ∆(X,H) − ∆(D,H|D) ≤ h1(X,OX) ≤
h1(D) + h1(X,−H) and the following facts are equivalents:

1. The restriction map H0(X,H)→ H0(D,H|D) is surjective.

2. ∆(D,H|D) = ∆(X,H).

64



Chapter II | Fano varieties

Proof. Consider the exact sequence 0 → OX → OX(H) → OD(H) → 0 and the long

exact sequence

0→ H0(X,OX)→ H0(X,OX(H))
r−→ H0(D,OD(H))

δ−→ H1(X,OX)

Then we have

h1(X,OX) ≥ h0(D,OD(H))− dim ker(δ) = ∆(X,H)−∆(D,H|D)

and

0 ≤ dim coker(r) = ∆(X,H)−∆(D,H|D) ≤ h1(X,OX)

From the exact sequence

0→ OX(−H)→ OX → OD → 0

we have h1(X,OX) ≤ h1(X,−H) + h1(D).

The previous results justifies the following definition, which is the main concept in the

theory of T. Fujita.

Definition II.2.5. A divisor D ∈ |H| of a polarized variety (X,H) is called a rung if

it is irreducible and reduced, and it is called regular if ∆(D,H|D) = ∆(X,H). A ladder

in (X,H) is a sequence of varieties X = Dn ⊃ Dn−1 ⊃ . . . ⊃ D1 such that dim(Di) = i

and Di is a rung of (Di+1, H|Di+1
).

Theorem II.2.6 ([Fuj77, Theorem 4.1], [Fuj90, Theorem 3.5]). Let (X,H) be a po-

larized variety such that ∆(X,H) ≤ g(X,H) and dim Bs |H| ≤ 0. If d(X,H) ≥
2∆(X,H)− 1 then

1. (X,H) has a regular ladder.

2. g(X,H) = ∆(X,H) and H is simply generated (in particular is very ample).

The following theorem is a fundamental tool in the characterization by ∆-genus.

Theorem II.2.7 ([Fuj90, Theorem 4.2]). Let (X,H) be a polarized algebraic variety.

Then ∆(X,H) > dim Bs |H| where Bs |H| is the base locus of the linear system |H|
(here we put dimBs |H| = −1 if Bs |H| = ∅). In particular ∆(X,H) ≥ 0.
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II.2.2 Classification of varieties with ∆-genus zero

In this section we present the ideas presented by T. Fujita in its work [Fuj75], in which

he gave the complete classification of polarized varieties (X,H) with ∆(X,H) = 0. The

goal is to prove the following classification theorem.

Theorem II.2.8 ([Fuj90, Theorem 5.10]). Let (X,H) be a smooth polarized algebraic

variety with n = dim(X) ≥ 2 and ∆(X,H) = 0. Then

1. if d(X,H) = 1 then (X,H) ∼= (Pn,OPn(1)).

2. if d(X,H) = 2, X is a hyperquadric in Pn+1, and H = OX(1).

3. if d(X,H) ≥ 3, X ∼= P(E), where E is a direct sum of positive degree line bundles

on P1.

4. (P2,OP2(2)).

Proof. For the moment we’ll prove the characterization for d = d(X,H) ∈ {1, 2}.
Suppose d = 1 (resp. d = 2). Since ∆(X,H) = 0, by Theorem II.2.7 we have Bs |H| = ∅,
and there is an associated morphism φ = φH : X → Pn (resp. φ : X → Pn+1) such that

φ∗OPn(1) = OX(H) (resp. φ∗OPn+1(1) = OX(H)). Since H is a basepoint-free ample

divisor, φ is a finite morphism and then Y = φ(X) has deg(Y ) = 1 (resp. deg(Y ) ≥ 2).

By the projection formula (Theorem I.1.13) we see

d(X,H) = Hn = deg(φ) · deg(Y )

we have deg(φ) = 1. This means φ is birational and by Zariski’s main theorem X ∼= Pn

(resp. X ∼= Y is a hyperquadric).

To prove the other characterizations we will need to study varieties with ∆-genus zero

more deeply. In the rest of this section we assume (X,H) is a smooth polarized variety

of dimension n = dim(X) with ∆(X,H) = 0.

Lemma II.2.9. If ∆(X,H) = 0 then g(X,H) = 0 and hi(X, tH) = 0 for i > 0, t ≥ 0.

In particular, if n = dim(X) = 1, X ∼= P1.

Proof. We prove it by induction on n. If n = 1, we have 0 = ∆(X,H) = 1+d−h0(X,H)

and by Riemann-Roch theorem h0(X,H)−h0(X,KX−H) = d+1−g(X,H), and then

g(X,H)
def
= h0(X,KX) = h0(X,KX −H).
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Thus, necessarily we have g(X,H) = 0, since otherwise H ∼ 0.

Suppose n ≥ 2 and take D ∈ |H| a general member of the linear system. As Bs |H| = ∅,
by Bertini’s theorem D is smooth. By Proposition II.2.4, 0 ≤ ∆(D,H|D) ≤ ∆(X,H) ≤
0, so by induction g(D,H|D) = g(X,H). Using now induction in the cohomology

vanishing claim, we have hi(D, tH|D) = 0 for i > 0, t ≥ 0, and the exact sequence

0→ OX((t− 1)H)→ OX(tH)→ OD(tH|D)→ 0 proves

hi(X, (t− 1)H) = hi(X, tH) for i > 0, t ≥ 0,

and the ampleness of H implies cohomology vanishing for t≫ 0.

Lemma II.2.10. The dimension of the space of sections of KX +nH is h0(KX +nH) =

d− 1 where d = d(X,H) is the degree.

Proof. We prove by induction on n. If n = 1, by Riemann-Roch theorem

h0(KX +H)− h0(−H)︸ ︷︷ ︸
=0

= deg(K +H) + 1− g(X,H) = d− 1

Now we take D ∈ |H| a smooth general member. We obtain the exact sequence

H0(X,K + (n− 1)H)︸ ︷︷ ︸
=0

→ H0(KX + nH)→ H0(D,KX + nH)→ H1(KX + (n− 1)H)︸ ︷︷ ︸
=0

where the vanishing of the right hand side is by Kodaira vanishing theorem, and the

sectional genus formula

(KX + (n− 1)L) · Ln−1 = 2g(X,H)− 2 = −2 < 0

gives us the left hand side vanishing. By adjunction formula KD = (KX + H)|D and

then

H0(X,KX + nH) ∼= H0(D, (KX + nH)|D) = H0(D,KD + (n− 1)H|D)

so induction works.

Lemma II.2.11. The dimension of the base locus of |KX + nH| verifies dim Bs |KX +

nH| < n− 1 when d = d(X,H) ≥ 3.
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Proof. The case n = 1 is clear (because X ∼= P1). For n ≥ 2 take D ∈ |H| a general

smooth member. By induction, noting that D ∩ Bs |K + nH| = Bs |KD + (n− 1)HD|
we estimate

dim Bs |KM + nH| ≤ 1 + dim (Bs |KM + nH| ∩D) = 1 + dim Bs |KD + (n− 1)HD| .

Proof of Theorem 2.3.1 (continuation). Now we suppose d ≥ 3. The rest of the proof

will be done in fourth steps.

Step 1. We will prove the following statement:

When n = 2, we have (KX + 2H)2 = 0 unless (X,H) ∼= (P2,OP2(2)).

Note that by Lemma II.2.10 it is verified that (KX + 2H)2 ≥ 0, because there exists

at least 2 effective divisors linearly equivalents to KX + 2H. Sectional genus formula

gives (KX +H) ·H = 2g(X,H)− 2 = −2 so

(KX + 2H)2 = K2
X + 4(KX ·H +H2) = K2

X − 8 ≥ 0.

On the other hand, by Noether’s formula ([Bea83, I.14])

12 = 12χ(OX) = K2
X + χtop(X),

and χtop(X) (the topological Euler-Poincaré characteristic of X) is given by Betti num-

bers and

χtop(X) =
5∑

i=0

(−1)ibi(X) = 2(b0(X)− b1(X)) + b2(X) = 2 + b2(X) ≥ 3,

where we used that b1(X) = 2q(X)
def
= 2h1(X,OX) = 0. The fact that b2(X) > 0

is because the polarization H as an algebraic cycle defines a non-zero fundamental

class [H] ∈ H2n−2(X,Z) and by Poincaré duality H2(X,Z) ̸= 0. The two previous

inequalities shows either K2
X = 8 or K2

X = 9. If K2
X = 9 then b2(X) = 1 and the

classification of surfaces gives X ∼= P2. Since (KX + 2H)2 = 1, we obtain OX(H) =

OP2(2). Henceforth we suppose (X,H) ̸= (P2,OP2(2)).

Step 2. When n ≥ 3, we claim that (KX + nH)2 ·Hn−2 = 0. Note that it is enough to

prove for n = 3, because if D ∈ |H| is a smooth member, by induction the adjuntion

formula shows

(KX + nH)2 ·Hn−2 = (KX + nH)|2D ·H|n−3
D = (KD + (n− 1)H|D)2 ·H|n−3

D
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Then we take n = 3 and D ∈ |H| a smooth member, and note that by the previous

step it is sufficient to prove (D,H|D) ̸= (P2,OP2(2)). Suppose by contradiction that we

have (D,H|D) ∼= (P2,OP2(2)). By Lefschetz’s hyperplane section theorem (see [EH16,

§C.4]) the map H2(D,Z) → H2(X,Z) is surjective, and H2(D,Z) = Z. This implies

H2(X,Z) = Z and by Proposition II.1.4

Pic(X) ∼= H2(X,Z) ∼= H2(D,Z) ∼= Pic(D)

so there exists a line bundle L ∈ Pic(X) such that L|D = OP2(1). This implies H = 2L

and
4 = H|2D = H3 = 8L3,

which is a contradiction. Then the claim (KX + nH)2 ·Hn−2 = 0 follows.

Step 3. We will prove the next statement:

Bs |K + nH| = ∅ and the image of the morphism defined by |K + nH| is a curve.

Consider the rational map φ = φ|KX+nH| associated to the complete linear system

|KX + nH|. Note that if D1, D2 ∈ |KX + nH| are two general members the Lemma

II.2.11 shows dim(D1 ∩D2) < n− 1, and if D1 ∩D2 ̸= ∅ we have (KX + nH)2 ·Hn−2 =

D1·D2·Hn−2 > 0 since H is ample. The previous calculation shows that D1∩D2 = ∅ and

it follows that Bs |KX + nH| = ∅, so φ is in fact a morphism. Moreover, if Y = φ(X)

this also implies dim(Y ) = 1 (because two general hyperplane sections of Y doesn’t

intersect). In more detail, the computation

0 = D1 ·D2 = φ∗(φ
∗OPn(1) ·D) = OPn(1) · φ∗φ

∗D = O2
Pn · Y = OY (1)2

gives the desired conclusion.

Step 4. Take the morphism φ : X → Y = φ(X) ⊂ Pd−2 as before and denote y =

deg(Y ). If F is a general fiber of φ, note that by sectional genus formula

(KX + (n− 1)H) ·Hn−1 = 2g(X,H)− 2 = −2 ⇒ (KX + nH) ·Hn−1 = d− 2

and thus we arrive to

d− 2 = (KX + nH) ·Hn−1 = yF ·Hn−1

where we have used the fact that any two fibers of φ are numerically equivalent. This

allows us to calculate

0 ≤ ∆(Y,OY (1)) ≤ 1 + w − (d− 1) = y − (d− 2)
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and we get the conditions

y = d− 2, F ·Hn−1 = 1 and ∆(Y,OY (1)) = 0.

Then, Y ∼= P1 and any fiber F ′ of φ is irreducible and reduced because Hn−1 · F =

Hn−1 · F ′ = 1. Since the restriction H|F is basepoint-free and H|n−1
F = 1, the proof

of the first case shows (F,H|F ) ∼= (Pn−1,OPn−1(1)) for any fiber, and the conclusion

follows, for instance, from [Wat14, Proposition 2.5].

The previous classification theorem gives us in particular the following classification for

Fano varieties of large index.

Corollary II.2.12 (Kobayashi-Ochiai). Let X be a Fano variety of dimension n =

dim(X) and index r = ι(X) ≥ n. Then X is one of the following:

1. X ∼= Pn if r = n+ 1.

2. X ∼= Q ⊂ Pn+1 is a hyperquadric if r = n.

Proof. We know Hilbert polynomial χ(X,OX(tH)) is a degree n polynomial in the

variable t, χ(X,OX) = 1 and by Serre duality

χ(X,OX(−rH)) = χ(X,ωX) = (−1)nχ(OX) = (−1)n

By Kodaira vanishing theorem

hi(X,OX(tH)) = hi(X,KX−(KX−tH)) = hi(X,KX +(t+r)H) = 0 ∀i > 0, t > −r.

Since we already know n+ 1 values of χ(X,OX(tH)), this fixes the polynomial and we

conclude:

χ (X,OX(tH)) =


(
t+n
n

)
if r = n+ 1(

t+n+1
n+1

)
−
(
t+n−1
n+1

)
if r = n.

From the above formula we calculate

h0(X,OX(H)) = χ(X,OX(H)) = n+ d

so ∆(X,H) = 0, and when r = n + 1 (resp. r = n) we have d(X,H) = 1 (resp.

d(X,H) = 2). The conclusion follows from the classification of varieties with ∆-genus

0.
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II.2.3 Classification of del Pezzo manifolds

Since we already understand Fano varieties X with index ind(X) ≥ dim(X), the next

step will be jump to varieties with index ind(X) = dim(X)−1. In this section we present

the classification of such varieties, follow mainly the expositions in [Fuj80, Fuj81, Fuj90].

Definition II.2.13. A n-dimensional del Pezzo variety is a Fano variety X with index

ι(X) = n− 1.

The first crucial observation is that del Pezzo varieties can be characterized using ∆-

genus invariant.

Theorem II.2.14 ([Fuj80, Theorem 1.9]). Let (X,H) be a polarized variety of dimen-

sion n = dim(X). Then −KX = (n− 1)H if and only if ∆(X,H) = g(X,H) = 1.

With this numerical characterization, T. Fujita completely classified del Pezzo varieties.

This is summarized in the following theorem.

Theorem II.2.15 ([Fuj80, Fuj81]). Let (X,H) be a del Pezzo variety of dimension

dim(X) = n ≥ 3, i.e., −KX = (n − 1)H with H ample, and let d = Hn be its degree.

Then 1 ≤ d ≤ 8 and:

1. If d = 1, X is a hypersurface of degree 6 in P(1n, 2, 3).

2. If d = 2, X
π−→ Pn is a double cover branched along B4 ⊂ Pn, a smooth hypersur-

face of degree 4, and H = π∗OPn(1).

3. If d = 3, X is a cubic hypersurface in Pn+1, with H = OX(1).

4. If d = 4, X = X2,2 ⊂ Pn+2 is a smooth complete intersection of two quadrics.

5. If d = 5, X ∼= G ∩H is a smooth hyperplane section of

G(1, 4) ∼= G ⊂ P(
∧2C5) ∼= P9.

6. If d = 6, then X is P1×P1×P1, P2×P2, or P(TP2), where TP2 denotes the tangent

bundle of P2.

7. If d = 7, X ∼= Blp(P3) is the blow-up of P3 at a point.

8. If d = 8, then (X,H) ∼= (P3,OP3(2)).
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The most complicated cases of this classification theorem are d = 1, 5, and we won’t be

discussed here. As an illustration we will finish this section discussing the easiest cases

d = 3, 4, and in the following sections we will be interested on explicit constructions of

del Pezzo fourfolds of degree 5.

Proof of the cases d = 3, 4. When the degree is d = 3, by definition we have h0(X,H) =

n + 2 and we know H is very ample by Theorem II.2.6. Then, directly we have X ⊂
Pn+1 is a hypersurface of degree 3, i.e., is a cubic hypersurface with the polarization

H = OX(1).

In the case d = 4, we also have H is very ample and now we have h0(X,H) = n + 3

and an embedding X
|H|
↪−→ Pn+2. We can compute

h0(X, 2H) = χ(X,H) =
1

2
(n2 + 7n+ 8) = h0(Pn+2, 2H)− 2,

so there exists two hyperquadrics in Pn+2 containing X, which gives the conclusion.

II.3 Birational geometry of Fano fourfolds

In this section, our attention turns to the 4-dimensional case. The primary objective is

to gain a deeper understanding of the birational geometry of del Pezzo fourfolds with

degree d = 4, 5. We present some results about these varieties which can be found in

[PZ16, PZ17], and we also expand several calculations. We will freely use the notation

and results from Intersection Theory as in [Ful84] and [EH16].

This study lays a critical foundation for the subsequent analysis of Fano-Mukai fourfolds

of genus 9, which will be addressed in Chapter IV.

II.3.1 Geometry of fourfolds

We begin studying smooth projective varieties of dimension 4 in general. First, we

stablish explicitly the Hirzebruch-Riemann-Roch theorem ([Har77, Theorem A.4.1]) in

dimension 4.

Theorem II.3.1. Let X be a smooth projective fourfold and D a divisor on X. Then

χ (X,OX(D)) =
1

24

[
D4 + 2D3 · c1(X) +D2·

(
c1(X)2 + c2(X)

)
+

+D · c1(X) · c2(X)] + χ (OX) .
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Remark II.3.2. Note that if X is rationally connected2 (e.g. if X is a Fano variety)

then χ(X,OX) = 1.

A fundamental tool for our purposes will be the knowledge of the Chow ring of a blow-up

in dimension 4, and the explicit formulas for blowing-up Chern classes. The following

theorem can be obtained from [Ful84, Theorem 15.4].

Lemma II.3.3. Let X be a smooth projective fourfold, and ρ : X̃ → X the blow-up

along a smooth subvariety Z ⊂ X with exceptional divisor E.

1. If Z = p ∈ X is a point and H ∈ Pic(X), the following relationships are verified:

KX̃ = ρ∗KX + 3E and c2(X̃) = ρ∗c2(X) + 2E2.

Moreover,

ρ∗(H)4 = H4, ρ∗(H)3 · E = ρ∗(H)2 · E2 = ρ∗(H) · E3 = 0, and E4 = −1.

2. If Z = C ⊆ X is a curve of genus g(C), A ∈ CH2(X̃) is the class of a fiber of the

P2-bundle ρ|E : E → C, and H ∈ Pic(X), we have

KX̃ = ρ∗KX + 2E and c2(X̃) = ρ∗c2(X) + (KX · C + 6− 6g(C))A.

Moreover,

ρ∗(H)4 = H4, ρ∗(H)3 · E = ρ∗(H)2 · E2 = 0, ρ∗(H) · E3 = H · C, and
E4 = −KX · C + 2g(C)− 2.

3. If Z = S ⊆ X is a surface and H ∈ Pic(X), we have

KX̃ = ρ∗KX + E and c2(X̃) = ρ∗c2(X) + ρ∗S + ρ∗KX · E.

Moreover,

ρ∗(H)4 = H4, ρ∗(H)3 · E = 0, ρ∗(H)2 · E2 = −S ·H2,

ρ∗(H) · E3 = −H|S ·KS +KX ·H · S, and
E4 = c2(X) · S +KX |S ·KS − c2(S)−K2

X · S,

where c2(S) = χtop(S) = 12χ(S,OS)−K2
S.

2This means that for general x, y ∈ X we can find a rational curve conneting these points.
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II.3.2 Lines on del Pezzo fourfolds

Here we study the lines contained in a del Pezzo fourfold of degree d ∈ {3, 4, 5} following

[PZ16]. We prove the following characterization.

Lemma II.3.4 ([PZ16, Lemma 2.5]). Let W = Wd ↪→ Pd+2 be a del Pezzo fourfold of

degree d ≥ 3. Then W contains a line and its normal bundle is one of the following:

Nl/W ≃ OP1 ⊕ OP1 ⊕ OP1(1),

Nl/W ≃ OP1(−1)⊕ OP1(1)⊕ OP1(1).

Proof. Let W = Wd ↪→ Pd+2 be a del Pezzo fourfold of degree d ≥ 3, and take H1, H2 ⊂
W two general hyperplane sections. Then, by Theorem II.2.6 F := H1 ∩H2 ↪→ Pd is a

smooth del Pezzo surface of degree d, and by the classification of del Pezzo surfaces we

know that such surface F contains lines P1 ∼= ℓ ⊆ F and that they verify −KF · ℓ = 1,

i.e., ℓ is a (−1)-curve on F . In particular, we have that Nℓ/F
∼= Oℓ(−1).

In order to compute the normal bundle Nℓ/W , note that since F = H1 ∩ H2, we have

NF/W
∼= (OW (1)⊕OW (1))|F , and hence NF/W |ℓ ∼= Oℓ(1)⊕2. By Birkhoff-Grothendieck

theorem, we can write

Nℓ/W
∼= Oℓ(a)⊕ Oℓ(b)⊕ Oℓ(c) for some a, b, c ∈ Z.

Hence, the short exact sequence

0→ Nℓ/F
∼= Oℓ(−1)→ Nℓ/W → NF/W |ℓ ∼= Oℓ(1)⊕2 → 0

implies that a + b + c = deg(Nℓ/W ) = −1 + 2 = 1. On one hand, the non-zero

morphism Oℓ(−1) ↪→ Nℓ/W ↠ Oℓ(a) induces Oℓ → Oℓ(a + 1), i.e., a non-zero regular

section of Oℓ(a + 1). The existence of such a section implies that a + 1 ≥ 0, and

similarly we deduce that b ≥ −1 and c ≥ −1. On the other hand, the composition

Oℓ(a) ↪→ Nℓ/W ↠ Oℓ(1)⊕2 ↠ Oℓ(1) induces a non-zero regular section of Oℓ(1− a) and

hence 1−a ≥ 0. Similarly, we deduce that b ≥ 1 and c ≤ 1, and thus if we assume that

a ≤ b ≤ c we obtain that (a, b, c) ∈ {(0, 0, 1), (−1, 1, 1)}, i.e.,

Nℓ/W
∼= O⊕2

P1 ⊕ OP1(1) or Nℓ/W
∼= OP1(−1)⊕ OP1(1)⊕2.
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Remark II.3.5. If we consider a line ℓ ⊂ W on a del Pezzo fourfold of degree d ∈
{3, 4, 5}, we have Nℓ/W

∼= O⊕2
P1 ⊕ OP1(1), by deformation theory this implies that the

Hilbert scheme of lines on W , denoted L (W ), is smooth of dimension 4. Moreover,

Prokhorov and Zaindeberg observed in [PZ16, Corollary 2.6] that through any point

p ∈ W there passes a family of lines in W of dimension ≥ 1, and that this family has

dimension 1 if d ≥ 4.

II.3.3 Sarkisov link between W4 and P4

To explore the geometry of W4 in more detail, we will prove there is a way to link this

variety with P4. First, we recall the construction of a linear projection from a projective

variety.

Definition II.3.6. Consider a (n+ 1)-dimensional C-vector space Vn+1
∼= Cn+1 and a

projective variety X ⊂ Pn which contains properly a linear subspace Y := P(Vm+1) ∼=
Pm ⊊ X. The linear projection with center Y corresponds to the rational map π :

X 99K P(Vn+1/Vm+1) ∼= Pn−m−1.

In the case of a quartic del Pezzo fourfold, Prokhorov and Zaidenberg proved that the

linear projection from a line fits in the following Sarkisov link.

Proposition II.3.7 ([PZ16, Proposition 3.1]). LetW = W4 ⊂ P6 be a quartic del Pezzo

fourfold, i.e., an intersection of two quadrics in P6. Pick H ∈ Pic(W ) a generator and

a general line ℓ ⊂ W . There exists a conmutative diagram

E

��

⊂ W̃
ρ

~~

φ

��

⊃ M

��

ℓ ⊂ W π // P4 ⊃ F

where π is the linear projection with center ℓ, ρ is the blow-up of ℓ with exceptional

divisor E, and φ is the birational morphism defined by the linear system |ρ∗H − E|.
Furthermore, we have the following hold.

1. The φ-exceptional locus is an irreducible divisor M ⊂ W̃ .

2. If L ∈ Pic(P4) is the ample generator, the folowing relations are verified

φ∗L ∼ ρ∗H − E, M ∼ 2ρ∗H − 3E,

ρ∗H ∼ 3φ∗L−M, E ∼ 2φ∗L−M.
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3. The image F := φ(M) is a smooth surface of degree 5 and φ is the blow-up with

center F .

4. W\ρ(M) ≃ P4\φ(E) where φ(E) is a quadric in P4.

Proof. We will divide the proof in several steps.

Step 1. the rational map φ is a morphism and W̃ is a fano fourfold. Since the linear

projection π : W 99K P4 is defined by |H ⊗Iℓ| (where Iℓ denotes the sheaf of ideals of

ℓ), and its schematic base locus is precisely given by ℓ ⊆ W , a local computation easily

shows that the linear system |ρ∗H − E| is basepoint-free, so φ is in fact a morphism.

In particular, the divisor D := ρ∗H − E is nef. Now, since W is a del Pezzo fourfold,

we have that −KW = 3H and

−KW̃ = 3ρ∗H − 2E
def
= ρ∗H + 2D.

We know that ρW̃ = 2, so the nef cone of W̃ is 2-dimensional. The nef divisors ρ∗H and

2D are linearly independent in N1(W̃ )R ∼= R2 and thus their sum −KW̃ is contained in

the interior of the nef cone and hence is ample (see Corollary I.1.24).

Now we can play the 2-ray game. More precisely, NE(W̃ ) has two extremal rays R1, R2,

and we can assume that ρ = contR1 . By the Cone Theorem, the second extremal ray

R2 corresponds to a second extremal contraction φ := contR2 : W̃ → T onto a normal

projective variety T .

Step 2. The extremal ray R2 is generated by the class [C̃], where C̃ is the strict transform

of a line P1 ∼= C ⊆ W meeting the fixed line ℓ ⊆ W at one point. First of all, note that

the line C ⊆ W exists by Remark II.3.5. By the projection formula we have that

D · C̃ = ρ∗H · C̃ − E · C̃ = H · C − E · C̃ = 1− 1 = 0,

and hence D is a nef but not ample divisor. Since C̃ is not contracted by ρ, we deduce

that [C̃] spans an extremal ray of NE(W̃ ) and moreover D is a supporting divisor for

the associated extremal contraction φ : W̃ → T , i.e., φ = φ|mD| where m ≫ 0 (see

Corollary I.2.17). Since D is basepoint-free, we deduce that m = 1.

Step 3. T ∼= P4 and the morphism φ : W̃ → T ∼= P4 is birational. By Theorem I.3.2,

there is an exact sequence

0 −→ Pic(T )
φ∗
−→ Pic(W̃ )

(−)·C̃−−−→ Z
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and hence ρ(T ) = 1. Moreover, since D · C̃ = 0, there exists L ∈ Pic(T ) such that

D = ρ∗H − E = φ∗L. Since D is basepoint-free and ρ(T ) = 1, we have that L is

necessarily an ample line bundle. The relations below follows from Lemma II.3.3:

(ρ∗H)4 = H4 def
= 4, ρ∗(H)3 · E = 0, ρ∗(H)2 · E2 = 0,

ρ∗(H) · E3 = H3 · ℓ def
= 1, E4 = −KW · ℓ− 2

def
= 1.

In particular, D4 = (ρ∗(H)−E)4 = 1 and hence deg(φ) · L4 = (φ∗L)4 = 1, from which

we deduce that T ∼= P4 (because L4 = 1) and that φ : W̃ → T is birational (as a

consequence of deg(φ) = 1).

Step 4. The φ-exceptional locus is an irreducible divisor M ∼ 2ρ∗ − 3E and F :=

φ(M) ⊂ P4 is a quintic surface. First, we already now φ is a divisorial contraction,

because it is birational. Then, a direct computation shows that

(φ∗L)3 · (aρ∗H − bE) = D3 · (aρ∗H − bE) = 3a− 2b,

and intersecting with the nef divisor ρ∗H we observe that if the divisor aρ∗H − bE is

effective and non-zero then a ≥ 1. Thus, the unique linear system contracted by φ is

M
def
= 2ρ∗H−3E and it follows this linear system has a unique irreducible divisor. Since

D2 ·M2 = ·(2ρ∗H − 3E) = −5 ̸= 0, it follows that D is contracted to a surface in P4.

Moreover, if we denote F := φ(R) for a divisor R ∈ |M |, we calculate (using Lemma

II.3.3) that

deg(F )
def
= L2 · φ(R) = −(φ∗(L))2 ·M2 = −D2 ·M2 = 5,

i.e., F ⊂ P4 is a quintic surface.

The hypothesis that the line ℓ ⊂ W is general implies that both R and F are a smooth

and φ is the blow-up of F (see [PZ16, Proposition 3.1] for details about that).

As a worked example, we will use tools from intersection theory to calculate in detail

the dimension h0(W̃ ,D).

Lemma II.3.8. With the notation of II.3.7, we have that dim H0(W̃ ,OW̃ (D)) = 6.

Proof. First, observe that we can write D = KW̃ + A where A = −KW̃ + D is an

ample divisor (since it is the sum of an ample and a nef divisor), and hence the Kodaira

vanishing theorem implies that Hi(W̃ ,OW̃ (D)) = 0 for all i ≥ 1.
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We are left to compute

h0(W̃ ,OW̃ (D)) = 1 +
1

24

[
D4 + 2D3 · c1(W̃ ) +D2·

(
c1(W̃ )2 + c2(W̃ )

)
+ D · c1(W̃ ) · c2(W̃ )

]
,

where

c1(W̃ ) = −KW̃ = 3ρ∗H − 2E and c2(W̃ ) = ρ∗c2(W ) + (KW · ℓ+ 6)A = ρ∗c2(W ) + 3A ,

where A ∈ CH2(W̃ ) is the class of a fiber of the P2-bundle ρ|E : E → ℓ. Here, since W

is a smooth complete intersection of two quadric hypersurfaces in P6, we can deduce

from the Euler exact sequence for TP6 and the short exact sequence defining the normal

bundle NW/P6 that the total Chern class of W is given by

c(W ) = 1 + 3H + 5H2 + 3H3 + 3H4,

which implies that c2(W ) = 5H2 and hence c2(W̃ ) = 5ρ∗H2 + 3A.

On one hand, it follows from II.3.3 that ifD = ρ∗H−E and c1(W̃ )
def
= −KW̃ = 3ρ∗H−2E

then

D4 = 1, 2D3 · c1(W̃ ) = 10, and D2 · c1(W̃ )2 = 20.

On the other hand, using that c2(W̃ ) = 5ρ∗H2 + 3A we observe that

D2 · c2(W̃ ) +D · c1(W̃ ) · c2(W̃ ) = c2(W̃ ) · (4ρ∗H2 − 7ρ∗H · E + 3E2)

= 80 + 3A · (4ρ∗H2 − 7ρ∗H · E + 3E2)

= 89,

where the last equality follows from Lemma II.3.9 below. We conclude therefore that

h0(W̃ ,OW̃ (D)) = 1 +
1

24
(1 + 10 + 20 + 89) = 6.

Lemma II.3.9. With the notation as above, we have that A ·ρ∗H2 = 0, A ·ρ∗H ·E = 0

and A · E2 = 1.

Proof. The first two assertions follows from the projection formula. In order to compute

A · E2 we consider the diagram

E � � j
//

g:=ρ|E
��

W̃

ρ

��

ℓ �
� i //W
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and we write ξ = c1(OE(1)) ∈ CH1(E). Here, j∗[E] = −ξ and j∗(α · j∗β) = (j∗α) · β by

the projection formula. Therefore, if p ∈ CH1(ℓ) denotes the class of a point in ℓ and

fp := g∗(p) ∈ CH1(E), then we have

E2 = −j∗(ξ) and E2 ·A = E2j∗g
∗(p) = −j∗(ξ ·(j∗j∗)(fp)) = −j∗(−ξ2 ·fp) = −(−1) = 1,

where (j∗j∗)(fp) = −ξ · fp follows from [Ful84, Proposition 2.6(c)] (cf. [Ful84, Theorem

3.3(b)]).

Remark II.3.10. The previous computation seems to indicate that there is an inac-

curacy on [PZ16, page 268], where it is claimed that h0(W̃ ,OW̃ (D)) = 5.

II.3.4 Schubert calculus and the Chow ring of a Grassmannian

Before describing in detail a Sarkisov link for W5, we provide a brief overview of the

Chow ring of a Grassmannian, focusing on the Grassmannian of lines in P4.

Consider a k-vector space V with dim(V ) = n + 1 and a complete flag V in V , i.e., a

nested sequence of subspaces:

{0} ⊂ V1 ⊂ · · · ⊂ Vn ⊂ Vn+1 = V,

where dim(Vi) = i.

Given two integers (a, b) such that 0 ≤ b ≤ a ≤ n − 1, the Schubert cycle Σa,b(V ) ⊂
G = Gr(2, V ) in the Grassmannian of lines Gr(2, V ) is defined as the closed subvariety:

Σa,b(V ) = {Λ ∈ G : Λ ∩ Vn−a ̸= 0 and Λ ⊂ Vn+1−b}.

This subvariety defines a class σa,b := [Σa,b(V )] ∈ CHa+b(G) of codimension a + b in

the Chow ring CH•(G) which is independent of the chosen flag V , and it is called a

Schubert class.

Theorem II.3.11 ([EH16, Corollary 4.7]). Schubert classes forms a free basis for the

Chow ring CH•(G).

As an example, we will give the complete description of the Chow ring CH•(G) =

CH•(Gr(2, 5)). Intersection formulas can be deduced from [Ful84, Proposition 14.6.1].
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Example II.3.12. We think about elements in Gr(2, 5) as lines in a projective space

P4, so a complete flag corresponds to a fixed sequence of nested linear subspaces

{p} ..= P0 ⊂ ℓ0 ..= P1 ⊂ Π ..= P2 ⊂ Λ ..= P3 ⊂ P4

and the Schubert cycles are described as follows:

Σ1,0 = {ℓ ∈ G : ℓ ∩ Π ̸= 0}, Σ2,0 = {ℓ ∈ G : ℓ ∩ ℓ0 ̸= 0}

Σ3,0 = {ℓ ∈ G : p ∈ ℓ}, Σ1,1 = {ℓ ∈ G : Λ ∩ P2 ̸= 0, ℓ ⊂ Λ}

Σ2,1 = {ℓ ∈ G : Λ ∩ P1 ̸= 0, ℓ ⊂ Λ}, Σ3,1 = {ℓ ∈ G : p ∈ ℓ, ℓ ⊂ Λ}

Σ2,2 = {ℓ ∈ G : ℓ ⊂ Π}, Σ3,2 = {ℓ ∈ G : p ∈ ℓ, ℓ ⊂ Π}

Σ3,3 = {ℓ ∈ G : ℓ = ℓ0}.

Below we give explicitly the rules to calculate intersections in G (which can be obtained

from [EH16, Proposition 4.9]):

σ2
1,0 = σ2,0 + σ1,1

σ2,0σ1,0 = σ3,0 + σ2,1

σ1,0σ1,1 = σ2,1

σ2
1,1 = σ2,2

σ2,1σ1,0 = σ3,1 + σ2,2

σ3,0σ1,0 = σ3,1

σ2
2,0 = σ3,1 + σ2,2

σ2,0σ1,1 = σ3,1

σ2,1σ1,1 = σ3,1σ1,0 = σ2,2σ1,0 = σ3,2

σ3,2σ1,0 = σ3,1σ2,0 = σ2
3,0 = σ2

2,1 = σ2,2σ1,1 = σ3,3

σ3,1σ1,1 = σ2,0σ2,2 = 0

These calculations also permit to compute Chern classes of G. To do this we recall

some constructions of vector bundles on Grassmannians.

Construction II.3.13. Let G = Gr(k, V ) be the Grassmannian of k-planes on a

vector space V of dim(V ) = n. The trivial vector bundle V := G × V contains a

subbundle S , called the universal subbundle of G, defined at every point [Λ] ∈ G as

S[Λ] = Λ ⊂ V . This vector bundle permits to obtain another non-trivial vector bundle
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taking the quotient, i.e., Q := V /S is a vector bundle called the universal quotient

bundle of G. Some linear algebra computations permits to calculate the total Chern

class of these vector bundles, and for k = 2 the formulas are the following:

c(Q) = 1 + σ1,0 + σ2,0 + . . .+ σn−2, c(S ) = 1− σ1,0 + σ1,1

and c(S ∨) = 1 + σ1,0 + σ1,1.

A fundamental fact is that the tangent bundle TG of the Grassmanian corresponds to

TG ∼= ℋℴ𝓂(S ,Q) ∼= S ∨⊗Q (see, e.g., [EH16, Theorem 3.5]). In order to express the

Chern classes of the tangent bundle TG in terms of the Chern classes of S ∨ and Q, we

can make use of the identity

ch(TG) = ch(S ∨) · ch(Q),

where ch(E) denotes the Chern character of a vector bundle E (see, e.g. [Ful84, §15.1]

or [EH16, §14.2]).

Using the preceding identities in the case of G = Gr(2, 5), by direct computations we

can derive the following lemma.

Lemma II.3.14. The Chern classes of G = Gr(2, 5) are

c1(G) = 5σ1,0, c2(G) = 11σ2,0 + 12σ1,1

c3(G) = 15σ3,0 + 30σ2,1, c4(G) = 35σ3,1 + 25σ2,2

II.3.5 Explicit constructions of quintic del Pezzo fourfolds

In this section we give an account on the results and constructions by T. Fujita in

[Fuj81] in the special case of fourfolds. We will denote by (W,H) a smooth polarized

fourfold such that

d(W,H)
def
= H4 = 5 and ∆(W,H)

def
= dim(X) + d− h0(W,H) = 9− h0(W,H) = 1.

Note that since d(W,H) ≥ 3 it follows from Theorem II.2.6 that

g(W,H)
def
= 1 +

1

2
(KW + 3H) ·H3 = 1.

Moreover, by Theorem II.2.14 we have that −KW = 3H and hence W is a quintic del

Pezzo fourfold with Pic(W ) = Z[H] (cf. [Fuj81, Lemma 9.1]).
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Example II.3.15. The following examples by Fujita [Fuj81, §7] provide different con-

structions of such varieties W based on objects from classical projective geometry.

1. The Grassmannian Gr(2, 5). If we denote by G ⊆ P9 be the image of Gr(2, 5)

via the Plücker embedding into P(∧2C5) and by HG the corresponding very ample

divisor on G, then dim(G) = 6, h0(G,HG) = 10 and one can compute using

Schubert calculus that d(G,HG) = 5. Indeed, hyperplane sections of Gr(2, 5)

under its Plücker embedding are given by the Schubert cycle HG = σ1,0, and

the formulas from previous sections shows H6
G = σ6

1,0 = 5. Thus, (G,HG) is a del

Pezzo variety and any smooth codimension 2 linear section WL := G∩L ⊆ L ∼= P7

is a quintic del Pezzo fourfold.

2. The Plücker quadric Q ⊆ P5. Let Q := {x ∈ P5, x0x5 − x1x4 + x2x3 = 0} be

the Plücker quadric in P5 and let Q0 = {x5 = 0} ∩Q be the singular hyperplane

section with Sing(Q0) = {p = [1, 0, . . . , 0]}. We will construct a Sarkisov link

from Q to a quintic del Pezzo fourfold W via the following diagram

Yφℓp

yy

φS

%%
Z

φℓ ��

X
φp
��

W Q
birationaloo

Here, we consider the blow-up φp : X := Blp(Q) → Q, with exceptional divisor

Ep ⊆ X, and we denote by D ⊆ X the strict transform of Q0 on X. By the

definition of blow-up coordinates we observe that

D ∼= {(z, t) ∈ P4 × P3, [z1, z2, z3, z4] = [t1, t2, t3, t4], z1z4 = z2z3, t1t4 = t2t3},

and hence D ∼= {(z,u,v) ∈ P4 × P1 × P1, [z1, z2] = [z3, z4] = [u0, u1], [z1, z3] =

[z2, z4] = [v0, v1]} lies in the image of the Segre embedding

P4 × P1 × P1
Id×φ|O(1,1)|
↪−−−−−−−→ P4 × P3.

Following T. Fujita’s notation, we denote by Hx (resp. Hz, etc) the line bundle

OP5(1) (resp. OP4(1), etc) on the projective space with homogeneous coordinates

x ∈ P5 (resp. z ∈ P4, etc). Then, Hx|D = Hz and Ep ∩ D = {z1 = z2 =

z3 = z4 = 0} ∼= P1 × P1 ⊆ D is a section of the P1-bundle πD : D → P1 × P1
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induced by the projection pr23. Moreover, (D,Hz) ∼= (P(E),OP(E)(1)) where E =

OP1×P1 ⊕ OP1×P1(1, 1).

If S is a smooth surface in the linear system |π∗
DOP1×P1(1, 1)|, we consider the

blow-up φS : Y := BlS(X)→ X with exceptional divisor ES ⊆ Y , and we denote

by Fp ⊆ Y and DY ⊆ Y the strict transforms of Ep and D on Y respectively.

Now, since OD(S)|Ep∩D = Hu
∼= (pr2 |D)∗OP1(1), we have that S ∩ Ep = ℓp ∼= P1

is a line on Ep
∼= P3 and we can assume that ℓp = {t1 = t3 = 0} up to change of

coordinates.

P1 × P1

D

πD

Ep ∩D
ℓp

S

Hence, Fp
∼= Blℓp(Ep) ∼= P(O⊕2

P1 ⊕ OP1(1)) is the blow-up of P3 along a line.

Explicitly, we have that Fp
∼= {([t1, . . . , t4], s) ∈ P3 × P1, [t1, t3] = [s0, s1]} and ℓp

is a section of the P2-bundle Fp
pr2−−→ P1. We observe that

OY (Fp)|Fp
∼= φ∗

S(Ep)|Fp
∼= −Ht,

and hence Fp can be blown-down to ℓp. More precisely, it follows from Moishe-

zon contraction theorem [Mis69] that (Y, Fp) ∼= (Blℓp(Z), Eℓp) for some3 smooth

projective variety Z with ℓp ⊆ Z. If DZ is the image of DY by the blow-down

φℓp : Y → Z then

DZ
∼= {(z, s) ∈ P4 × P1, [z1, z3] = [z2, z4] = [s0, s1]}.

As before, we can check (see [Fuj81, §7.7] for details) that DZ can be blown-down

to ℓ ∼= P1 with respect to the P2-bundle structureDZ
pr2−−→ P1. More precisely, there

is a smooth projective variety W such that ℓ ⊆ W and (Z,DZ) ∼= (Blℓ(W ), Eℓ),

3Alternatively, if we denote by Σ the image of S in Q, then we have that ℓp = S∩Ep is a (−1)-curve
on S and Σ is its blow-down. We observe that (Σ, Hx) is a polarized manifold with d(Σ, Hx) = 0 and

∆(Σ, Hx) = 0 and hence it follows from [Fuj75] that Σ ∼= F1 is the blow-up of P2 at a point. Now, one

observes that Z ∼= BlΣ(Q) and DZ is the strict transform of Q0.
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and if we consider φℓ : Z → W then it can be checked that DZ + Hx ∼ φ∗
ℓH,

where H is an ample line bundle in W such that −KW = 3H and H4 = 5.

3. The twisted cubic C ⊆ P3 ⊆ P4. Consider P4 with homogeneous coordinates

x = [x0, . . . , x4] and let D = {x4 = 0} ∼= P3 be a hyperplane. Let C := ν3(P1) be

the twisted cubic embedded in P3 ∼= D via the Veronese embedding of degree 3

and assume, for instance, that

P1
t
∼= C = {[x0, x1, x2, x3] ∈ P3 ∼= D, x0x2 = x21, x0x3 = x1x2, x1x3 = x22},

where Hx|C ∼ 3Ht. Let φ : W̃ := BlC(P4) → P4 be the blow-up along C, with

exceptional divisor EC ⊆ W̃ , and let D̃ be the strict transform of D on W̃ . Note

that the sections ⟨x0x2−x21, x0x3−x1x2, x1x3−x22⟩ ⊆ H0(W̃ , 2φ∗Hx−EC) define

a linear system Λ on D̃ ∼= BlC(D) which is base point free. Let ρΛ : D̃ → P2

be the associated morphism, and note that this defines a P1-bundle structure on

D̃ since the twisted cubic C ⊆ D ∼= P3 is not a complete intersection: if we

denote by F any fiber of ρΛ, then there are precisely two quadrics Q1, Q2 ⊆ D

containing C such that F is the intersection of their strict tranforms on D̃. Since

C is linearly non-degenerate (i.e., is not contained in any plane in P3 ∼= D), we

have that both Q1 and Q2 are irreducible and hence Q1 ∩Q2 is a curve of degree

4 in P3 containing the cubic C, i.e., Q1 ∩Q2 = C ∪ ℓF where ℓF ∼= P1 is a residual

line. Here, the restriction of D̃ → D to F induces an isomorphism F
∼−→ ℓF and

thus ρΛ : D̃ → P2 is a P1-bundle.

Now, remark that OW̃ (2φ∗Hx−EC)|F ∼= OF since F ∼= P1 and (2φ∗Hx−EC)·F =

0 and hence OW̃ (D̃)|F
def
= OW̃ (φ∗Hx − EC)|F = OW̃ (−φ∗Hx)|F ∼= OF (−1) and

hence D̃ can be blow-down with respecto to ρΛ by the Moishezon contraction

theorem. More precisely, there is a smooth projective variety W such that

(W̃ , D̃) ∼= (BlΞ(W ), EΞ), where Ξ ∼= P2. Since (2φ∗Hx − EC)|F ∼= OF , we have

that 2φ∗Hx −EC ∼ ρ∗H for some line bundle H ∈ Pic(W ), where ρ : W̃ → W is

the blow-down of D̃ to Ξ.

Since ρ(W̃ ) = 2 and 2φ∗Hx − EC = (φ∗Hx − EC) + φ∗Hx is the sum of two

numerically independent nef divisors, we deduce that ρ∗H is ample and hence

H ∈ Pic(W ) is ample, as ρ(W ) = 1. Note that

ρ∗(KW+3H) = KW̃−D̃+3ρ∗H = (−5φ∗Hx+2EC)−(φ∗Hx−EC)+3(2φ∗Hx−EC) = 0

84



Chapter II | Fano varieties

and hence −KW = 3H, i.e., W is a smooth del Pezzo fourfold. Finally, we

compute (see §1) that

d(W,H) = H4 = (2φ∗Hx − EC)4

= 16φ∗H4
x − 32φ∗H3

x · EC + 24φ∗H2
x · E2

C − 8φ∗Hx · E3
C + E4

C

= 5,

since

φ∗H4
x = H4

x = 1, φ∗H3
x · EC = φ∗H2

x · E2
C = 0, φ∗Hx · E3 = H3

x · C = 3

and E4 = −KP4 · C + 2g(C)− 2 = 13.

The main theorem presented in this section is the following theorem by T. Fujita.

Theorem II.3.16 ([Fuj81, Theorem 7.9]). All quintic del Pezzo fourfolds are isomor-

phic to each other.

The proof is based on constructing explicit Sarkisov links via linear projections from

suitable planes on W (cf. [Tod30] where the case of linear sections of Gr(2, 5) ∼= G(1, 4)

is discussed).

Lemma II.3.17 ([Fuj81, Lemma 10.1]). W ⊆ |H| ∼= P7 contains a plane P2 ∼= S ⊆ W .

We distinguish between two types of planes on W depending on the nature of the

associated linear projection.

Definition II.3.18. Let S ⊆ W ⊆ P7 be a plane. We say that:

• S is of vertex type if πS : W 99K P4 is not surjective.

• S is of non-vertex type if πS : W 99K P4 is surjective.

Proposition II.3.19 ([Fuj81, 10.7]). If S ⊆ W is a plane of non-vertex type then

BlS(W ) ∼= BlC(P4) where C ⊆ P3 ⊆ P4 is the twisted cubic, i.e., W is obtained as in

Example II.3.15(3).

The previous Proposition will be proved in an alternative way in the next section (see

II.3.25). The next ingredient in the proof of Theorem II.3.16 is the following result

allowing to distinguish planes of vertex type and non-vertex type using lines.
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Lemma II.3.20 ([Fuj81, Lemma 10.8]). Let S ⊆ W be a plane and let P1 ∼= ℓ ⊆ S

be a line. Let us consider ρ : W̃ := Blℓ(W ) → W and let φ : W̃ ↠ X ⊆ P5 be the

regular morphism associated to the basepoint-free linear system |ρ∗H−E|. If we denote

by S̃ ⊆ W̃ the strict transform of S, then pS := φ(S̃) ∈ is a point on X and

S is of vertex type if and only if pS is a vertex of X (i.e., Sing(X) = {pS}).

Moreover, if S1, S2 ⊆ W are planes such that S1 ∩ S2 = ℓ is a line, then either S1 or

S2 is of non-vertex type.

The last ingredient consist in analyzing planes of vertex type.

Proposition II.3.21 ([Fuj81, 10.21-10.25]). Let S ⊆ W be a plane of vertex type and

let ρ : W̃ := BlS(W )→ W . Then, we have that

1. The image of φ|ρ∗H−E| : W̃ → P4 is a smooth quadric Q ⊆ P4.

2. There exists a fiber4 F ⊆ W̃ of φ|ρ∗H−E| : W̃ → Q with dim(F ) = 2.

3. The image ρ(F ) is a plane SF ⊆ W such that S ∩ SF is a line.

Putting all the geometric information together, we can deduce the main result of T.

Fujita.

Proof of Theorem II.3.16. Let S ⊆ W be a plane. If S is of non-vertex type then

it follows from Proposition II.3.19 that W can be obtained from the twisted cubic

C ⊆ P3 ⊆ P4. If S is of vertex type, it follows from Proposition II.3.19 and Lemma

II.3.20 that SF is of non-vertex type and hence we are in the previous situation. Finally,

we observe (by explicit linear algebra computations) that all the pairs (C,P3) in P4 are

projectively equivalent (i.e., the natural action of PGL5(C) on such pairs is transitive)

and hence all quintic del Pezzo fourfolds W are isomorphic.

4In particular, the morphism φ|ρ∗H−E| : W̃ → Q is not flat. It would be natural to study if W̃

is the projectivization of a Bǎnicǎ sheaf over the smooth 3-dimensional quadric Q (see [BW96] for

details).
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II.3.6 Sarkisov link between W5 and P4 after Fujita and Todd

In this section we follow the original articles by Todd [Tod30] and Fujita [Fuj81], and

the work of Prokhorov and Zaidenberg [PZ16].

For the rest of the section we take W = W5 as a del Pezzo fourfold of degree 5. By

the analysis of the previous section we already know that W corresponds to the image

of Gr(2, 5) ↪→ P9 under the Plücker embedding, so W = W5 ⊂ P7. We also know that

−KW = 3H and Pic(W ) = Z[H].

The coputation of Chern classes of G = Gr(2, 5) in the previous section allows us to

compute first Chern classes of W .

Lemma II.3.22. The Chern classes of W = W5 are

c1(W ) = 3σ1,0|W , c2(W ) = 4σ2,0|W + 5σ1,1|W

Proof. Since W corresponds to a codimension 2 linear section of G, this implies that

it corresponds to the vanishing of two sections of its polarization OG(H) ∼= OG(1). In

particular, this means that its normal bundle is given by NW/G
∼= OG(H)|⊕2

W , and then

its total Chern class is,

c(NW/G) = (1 + c1(OG(H)|W ))2 = (1 + σ1,0|W )2.

By definition of the normal bundle we have an exact sequence of vector bundles

0 −→ TW −→ TG|W −→ NW/G −→ 0,

and by the functoriality of the total Chern classes, we attain

c(G) = c(W ) · c
(
NW/G

)
= c(W ) · (1 + σ1,0|W )2 ,

which permits to obtain the result.

The following result is a very well-known characterization about planes in W due to

[Tod30].

Proposition II.3.23 ([Tod30]). Let W = W5 ⊂ P7 be a del Pezzo fourfold of degree 5.

Then the following hold.

1. W contains a unique σ2,2-plane Ξ and a one-parameter family of σ3,1-planes.
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2. Any σ3,1-plane Π meets Ξ along a tangent line to a fixed conic C ⊂ Ξ.

3. Any two σ3,1-planes Π1,Π2 meet at a point p ∈ Ξ \ C.

4. Let R be the union of all σ3,1-planes. Then R is a singular hyperplane section of

W with Sing(R) = Ξ.

Lemma II.3.24. Let Λ ⊂ W be a plane. Then c1(NΛ/W ) = 0 and c2(NΛ/W ) = 2

(respectively c2(NΛ/W ) = 2) if Λ is of type σ2,2 (respectively of type σ3,1).

Using the previous description of W , we will study the blow-up W̃ = BlΞ(W ) of W at

its unique σ2,2-plane, so we have the following situation

P(N ∨
Ξ/W ) ∼= E � � j //

ρE

��

W̃

ρ

��

P2 ∼= Ξ � � i //W

The crucial fact about this blow-up, again by Prokhorov and Zaidenberg, is that it fits

in a Sarkisov link with P4, in a similar fashion that in the case of W4. Specifically, we

have the following characterization, which is in fact the same as the description given

by T. Fujita.

Proposition II.3.25 ([PZ17, Theorem 2.1]). Let Ξ ⊂ W be the unique σ2,2-plane.

There exists a commutative diagram

E

��

⊂ W̃
ρ

~~

φ

��

⊃ R̃

��

Ξ ⊂ W
π // P4 ⊃ C

where

1. ρ : W̃ → W is the blow-up of Ξ, π : W 99K P4 is the projection from Ξ and

φ : W̃ → P4 is the blow-up of a rational normal cubic curve C ⊂ P4.

2. φ : W̃ → P4 is the morphism associated to the linear system |ρ∗H − E|, where
E = ρ−1(Ξ) is the exceptional divisor of ρ.

3. φ(E) = P3 = ⟨C⟩ is the linear span of the curve C.

4. the exceptional divisor R̃ = φ−1(C) of φ is equal to the strict transform of R and

R̃ ∼ ρ∗H − 2E.
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Proof. In this proof we will omit the computations of intersection numbers, because

they are presented in the next Lemma for reasons of order.

By the same argument as in the case of W4, we have that the blow-up W̃ is a Fano

manifold. Indeed, the divisor D := ρ∗H − E is nef and −KW̃ = 2ρ∗H − D is ample.

It follows that we have a morphism φ = φ|D| : W̃ → P4 induced by the linear system

|D|, and the calculations D4 = D3 · E = 1 implies that φ(W̃ ) = P4 and φ(E) = P3.

Besides, note that the strict transform R̃ of the hyperplane section R ⊂ W described

in II.3.23 verifies that R̃ ∼ ρ∗H − kE for some k ≥ 2. Indeed, ρ∗R = R̃ + kE with

k ≥ 2 because Sing(R) = Ξ, and since R ∈ |H|, we obtain R̃ ∼ H∗ − kE for some

k ≥ 2. Moreover, since R̃ is irreducible and reduced, previous calculations implies

(H∗ − E)3 · R̃ = 2− k ≥ 0, so in fact k = 2.

On the other hand, note that if Hα ⊂ P4
α is a generic hyperplane, we have φ∗Hα =

H∗ − E = E + R, because R ∈ |H∗ − 2E|, and as E is the fixed part (in particular

h0(W̃ , E) = 1), R is the movable part of φ∗Hα. We can note C
def
= φ(R) is contained

in a unique hyperplane in P4. Indeed, if we take the restriction H0(W̃ , φ∗Hα)
restR−−−→

H0(R,Hα), and if h ∈ H0(P4, Hα) is a hyperplane, note

ρ∗h ∈ ker(restR) ⇐⇒ ∀x ∈ R, (ρ∗h)(x) = h(ρ(x)) = 0 ⇐⇒ C ⊂ {h = 0}

Thus, if C is contained in more than 1 hyperplane, dim(ker(restR)) ≥ 2 and by the

exact sequences

0→ OW̃ (−R̃)→ OW̃ → OR̃ → 0 /⊗ OW̃ (E + R̃)

0→ OW̃ (E)→ OW̃ (ρ∗H)→ OR̃(ρ∗H)→ 0

we obtain the exact sequence

0→ H0(W̃ , E)→ H0(W̃ , ρ∗Hα)
restR−−−→ H0(R,Hα)→ . . .

so ker(restR) = h0(W̃ , E) = 1, which is a contradiction, and the unique hyperplane

containing C
def
= φ(R̃) is φ(E) = P3.

We can describe C as a twisted cubic curve. First, since

H2
α · C = (H∗ − E)2 · (H∗ − 2E)2 = (H∗)4 + 13(H∗)2 · E2 + 4E4 = 0

we deduce dimC = 1, so C is an irreducible curve. Let F be a general fiber of R̃→ C

and denote d = deg(C). Then
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d(H∗)2 · F = (H∗)2 · (H∗ − E) · R̃ = (H∗)2 · (H∗ − E) · (H∗ − 2E) = 3

and since C is not a line (it is contained in a unique hyperplane) it follows that deg(C) =

3. Moreover, as C is a degree 3 curve in P3 which is not contained in a P2, it is rational5,

so in fact C is a twisted cubic curve in φ(E).

This computation also says that (H∗)2 · F = 1 for a general fiber F , and in fact since

C is rational we have (H∗)2 · F = 1 for any fiber F of φ|R̃. By the relative version

of Nakai-Moishezon criterion (see [KM98, Theorem 1.42]) this implies ρ∗H is φ-ample

and moreover φ|R̃ is a P2-bundle.

Finally, note that if L ∈ Pic(P4) is the ample generator, R̃ = ρ∗H − 2E = φ∗L − E
and then OW̃ (R̃)|F = OW̃ (−E)|F = OF (−1). Moishezon contraction theorem ([Mis69,

Fuj81]) implies that φ is the blow-up along C.

As we did in the case of quartic del Pezzo fourfolds, as an example we will calculate in

detail the dimension h0(W,D).

Lemma II.3.26. With the notation of Theorem II.3.25, we have h0(W,D) = 5.

Proof. By Kodaira vanishing theorem we have χ(W̃ ,OW̃ (D)) = h0(W̃ ,OW̃ (D)), and

since W̃ is Fano, we know that χ(W̃ ,OW̃ ) = 1. Then by Hirzebruch-Riemann-Roch

theorem we have the formula

h0(W̃ ,OW̃ (D)) = 1 +
1

24

 D4︸︷︷︸
(i)

+2D3 · c1(W̃ )︸ ︷︷ ︸
(ii)

+D2 · c1(W̃ )2︸ ︷︷ ︸
(iii)

+ D2 · c2(W̃ )︸ ︷︷ ︸
(iv)

+ D · c1(W̃ ) · c2(W̃ )︸ ︷︷ ︸
(v)


In the following we calculate every term in the formula.

(i) Using formulas for the Chow ring of blow-up, we have

H∗ = H4 def
= 5, (H∗)3 · E = 0, (H∗)2 · E2 = −Ξ ·H2 = −1.

5In general, if C ⊂ Pn is a deg(C) = n curve which is not contained in a hyperplane, we can

consider the projection from a general point x ∈ C, π : Pn 99K Pn−1 and note that deg(π(X)) = n− 1.

Inductively, we reduce to P2.
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By adjunction and Lemma II.3.24, we have ωΞ = ωW |Ξ ⊗ c1
(
NΞ/W

)
, so

OW (H)|Ξ = OΞ(1) and we obtain

H∗ · E3 = −H|Ξ ·KΞ +KW ·H · Ξ = −OΞ(1) · OΞ(−3)− 3H2 · Ξ = 3− 3 = 0.

We can also calculate E4 noting the following6

E4 = (−1)4−1s4−2(NΞ/W ) ·H|0Ξ = −(c1(N
2

Ξ/W − c2(NΞ/W )) = 2.

Using all this calculations we compute

D4 = (H∗)4 − 4H̃3 · E + 6(H∗)2 · E2 − 4H∗ · E3 + E4 = 5− 6 + 2 = 1.

(ii) Because c1(W̃ )
def
= −KW̃ = 3H∗ − E, we directly obtain

D3 · c1(W̃ ) = 3(H∗)4 + 12(H∗)2 · E2 + E4 = 15− 12 + 2 = 5.

(iii) A direct calculation shows

D2 · c2(W̃ ) = 9(H∗)4 + 22(H∗)2 · E2 + E4 = 45− 22 + 2 = 25.

(iv) In this case the term corresponds to

D2 · c2(W̃ ) = H∗ · ρ∗c2(W̃ ) +H∗ · ρ∗Ξ− 2H∗ · E · ρ∗c2(W )− 2H∗ · E · ρ∗Ξ +

6(H∗)2 · E2 + E2 · ρ∗c2(W ) + E2 · ρ∗Ξ

By projection formula (H∗)2 · ρ∗Ξ = ρ∗(H2 · Ξ) = 1 and using Schubert calculus

(H∗)2 · ρ∗c2(W ) = H2 · c2(W )

= σ1,0|2W · (4σ2,0|W + 5σ1,1|W )

= (σ2,0|W + σ1,1|W ) · (4σ2,0|W + 5σ1,1|W )

= (13σ3,1 + 9σ2,2)|W
= (13σ3,1 + 9σ2,2) · σ1,0
= 13 + 9 = 22

Directly, we have

E3 · ρ∗KW = −3H∗ · E3 = 0,

E2 ·H∗ · ρ∗KW = −3E2 · (H∗)2 = 3 and H∗ · ρ∗KW · E = −3E ·H3 = 0.

6In dimension 4, the second Segre class is given by s2(E) = c1(E)2 − c2(E).
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K-stability

The aim of this chapter is to provide an introduction to K-stability and to outline the

broader context of this fascinating topic. As we will soon see, K-stability originates

in Differential Geometry but has grown over the years into a vibrant and multifaceted

area of research. Its study requires a diverse array of tools and perspectives, ranging

from group actions to valuations, making it both challenging and rewarding.

We begin by exploring the motivations behind the concept and then survey its devel-

opment, starting from the foundational definitions to some of the modern techniques

that have emerged. Along the way, we will touch upon a remarkable and unexpected

connection: the deep interplay between K-stability and the Minimal Model Program.

Finally, the chapter concludes with a collection of examples in dimension 2, where we

demonstrate K-stability computations using the methods introduced throughout this

survey.

This chapter is the result of a series of lectures I gave jointly with Pedro Montero during

the Algebraic Geometry Seminar at Pontificia Universidad Católica de Chile, mainly

based on lectures notes by Harold Blum and Kristin DeVleming. I am deeply grateful

to Giancarlo Urzúa and the seminar participants for giving me the opportunity to take

part in this enriching experience.

III.1 The Calabi problem for Fano varieties

To study projective (smooth) varieties X from the point of view of Differential Geom-

etry, we consider Hermitian metrics h (instead of Riemannian metrics), which in turn
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are associated with

ω
loc
=

i

2π

∑
ij

hij dzi ∧ dzj a (1, 1)-form with h = (hij) Hermitian matrix

where hij : X → C are C ∞-functions.

We say that (X,ω) is a Kähler variety if dω = 0.

Example III.1.1. In Pn, the Fubini-Study metric associated to1

ωFS :=
i

2
∂∂ log ∥z∥2

is a Kähler metric. Thus, for any X ⊆ Pn smooth projective subvariety, we have that

ω := ωFS|X is a Kähler metric on X, i.e., every smooth projective variety is a Kähler

variety.

Remark III.1.2. If X ∼= P1, C/Λ or D/Γ is a Riemann surface, there are classical

metrics (Fubini-Study, Euclidean, Poincaré, respectively) on X with constant curvature

(+1, 0, −1, respectively).

In 1954, Eugenio Calabi proposed studying the existence of a Kähler metric ω on every

smooth projective variety X such that

Ric(ω) = λω for some λ ∈ {−1, 0, 1} (Kähler-Einstein Equation)

where Ric(ω)
loc
= −i∂∂ log det(hij) is the Ricci curvature of ω.

Example III.1.3. In the affine chart U0 = {Z = [Z0, Z1, Z2] ∈ P2, Z0 ̸= 0} ∼= A2 of P2

with coordinates (z1, z2), we have ωFS
loc
= i

2
∂∂ log(1 + |z1|2 + |z2|2) = i

2π

∑
ij hij dzi ∧ dzj

where

h = (hij) =
π

(1 + |z1|2 + |z2|2)2

(
1 + |z2|2 −z1z2
−z1z2 1 + |z1|2

)
,

so we have det(hij) = π2(1 + |z1|2 + |z2|2)−3 and then Ric(ωFS)
def
= 6πωFS. Since Ric

is invariant under rescalings ω 7→ λ−1
0 ω, we can normalize to obtain λ = 1. Similarly,

Ric(ωFS) = 2π(n+ 1)ωFS in Pn.

Theorem III.1.4 (Kodaira’s Theorem). The Ricci curvature Ric(ω) defines a real

(1, 1)-form such that [Ric(ω)] = 2πc1(X)
def
= 2π[−KX ] ∈ H1,1(X,R). Thus, in the case

λ = −1 (resp. λ = 1) we have that [KX ] = [ω] (resp. [−KX ] = [ω]) is cohomologous to

a positive (1, 1)-form. Kodaira’s embedding theorem ensures that KX (resp. −KX) is

ample. Thus, the Kähler-Einstein equation implies that:

1Here, ∂f =
∑ ∂f

∂zi dzi and ∂f =
∑ ∂f

∂zj dzj .
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1. X is canonically polarized (i.e., KX ample) if λ = −1.

2. X is Calabi-Yau if λ = 0.

3. X is Fano (i.e., −KX ample) if λ = 1.

The existence of Kähler-Einstein metrics on all canonically polarized and Calabi-Yau

varieties are fundamental results in Geometric Analysis by Aubin and Yau, respectively.

Theorem III.1.5 (Calabi-Yau theorem, [Szé14]). Let (M,ω) be a compact Kähler

manifold, and let α be a real (1, 1)-form representing c1(M). Then there exists a unique

Kähler metric η on M with [η] = [ω] such that Ric(η) = 2πα.

On the other hand, we will see that not every Fano variety admits a Kähler-Einstein

metric.

Example III.1.6. Let X be a smooth Fano variety. Then,

• (dim(X) = 1) X ∼= P1 is Kähler-Einstein.

• (dim(X) = 2) X ∼= P1 × P1, P2 or Blp1,...,pr(P2) blow-up at r ≥ 8 points in

general position. We will see that all of them are Kähler-Einstein except for

Blp(P2) ∼= F1 and Blp1,p2(P2).

• (dim(X) = 3) Iskovskikh, Mori and Mukai classified the 3-folds of Fano into

17 + 88 = 105 families. In 2023, in [ACC+23] was proved that for exactly 78

families, the general member admits a Kähler-Einstein metric.

Historically, the concept of K-stability was introduced by G. Tian in [Tia97], as a

criterion to characterize the existence of Kähler-Einstein metrics on Fano manifolds.

This definition depends on the sign of an analytic invariant, called the generalized

Futaki invariant, which in turn has its origins in [Fut83]. In the last article it is defined

a linear functional on the Lie algebra of vector fields of a Kähler manifold, and it is

proved that the kernel of that functional provides an obstruction for the existence of

Kähler-Einstein metrics on Fano manifolds.

Later, in [Don02] it is given a definition of K-stability using purely algebraic geometry

terms, and that definition makes sense for polarized varieties. The following is the

fundamental theorem that justify the importance of K-stability.

Theorem III.1.7 (Chen-Donaldson-Sun 2014, Tian 2015). A smooth Fano variety X

admits a Kähler-Einstein metric if and only if (X,−KX) is K-polystable.
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III.2 Definition of K-stability

The purpose of this section is to present the very definition of K-(semi/poly)stability,

which involves the definition of two crucial concepts: test configurations and the

Donaldson-Futaki invariant. First, we present the complete definition (which is very

obscure) and then we will develop the basic aspects of the mentioned concepts.

Nowadays, the definition of K-stability looks like the following form. This is the defi-

nition stated in [ACC+23].

Definition III.2.1. Let X be a Fano klt variety of dimension dim(X) = n ≥ 2 and

let L := −KX be the anticanonical divisor. A test configuration of the polarized pair

(X,L) consists of the following data:

1. a normal variety X equipped with a Gm-action.

2. a flat Gm-equivariant morphism π : X → P1 where we consider the natural action

Gm ↷ P1, (t, [x, y]) 7→ [tx, y].

3. a Gm-equivariant p-ample Q−line bundle L →X and a Gm-equivariant isomor-

phism (
X\π−1(0), L |X \π−1(0)

)
∼=
(
X ×

(
P1\{0}

)
, pr∗1(L)

)
where pr1 denotes the projection to the first factor and 0 = [0, 1].

For such a test configuration, we define the Donaldson-Futaki invariant

DF(X ; L ) =
1

Ln

(
L n ·KX/P1 +

n

n+ 1
L n+1

)
.

Denote X0 = π−1(0) and X∞ = π−1(∞) where ∞ := [1, 0]. The test configuration is

said to be

1. trivial if there is a Gm-equivariant isomorphism(
X \X∞, L |X\X∞

)
∼=
(
X ×

(
P1\∞

)
, pr∗1(L)

)
,

2. product-type if there is an isomorphism(
X \X∞, L |X\X∞

)
∼=
(
X ×

(
P1\∞

)
, pr∗1(L)

)
.
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A Fano variety X is said to be

1. K-semistable if for every test configuration (X ,L ) we have DF(X ,L ) ≥ 0.

2. K-stable if for every non-trivial test configuration (X ,L ) we have DF(X ,L ) >

0.

3. K-polystable if it is K-semistable and DF(X ,L ) ≥ 0 if and only if (X ,L ) is

product-type.

Remark III.2.2. By definition we have the implications

X is K-stable =⇒ X is K-polystable =⇒ X is K-semistable.

This definition arises from a considerable amount of theory, and now we are going to

unravel this definition.

III.2.1 Test configurations

In this section we consider X as a (separated, finite type over k = C) projective scheme

and L ∈ Pic(X) as an ample line bundle.

Definition III.2.3. Suppose there is an action α : Gm×X → X of the affine algebraic

group Gm and let L ∈ Pic(X). A Gm-linearization of L is an action of Gm on the total

space V(L) of L that makes the projection V(L)
π−→ X a Gm-equivariant morphism

and such that the action on the fibers is linear. More formally, it is an action σ :

Gm ×V(L)→ V(L) such that the following diagram commutes

Gm ×V(L) σ //

IdGm ×π

��

V(L)

π

��

Gm ×X α // X

and such that the zero section 0L ⊆ V(L) is Gm-invariant.

Remark III.2.4. Since Pic(Gm) ∼= {1}, every L ∈ Pic(X) admits a linearization and

the possible classes of linearizations are parametrized by the character group X(Gm)
def
=

Homgr(Gm,Gm) ∼= Z. For example, if X = P1 and L = OP1(−1) then

V(L)
def
= {([x0, x1], λ(x0, x1)), [x0, x1] ∈ P1, λ ∈ C},

and the Gm-action given by t · ([x0, x1], λ(x0, x1)) := ([x0, tx1], λ(x0, tx1)) determines a

Gm-linearization of L.
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Now, our starting definition of test configuration will be the following.

Definition III.2.5 (test configuration). A test configuration of (X,L) is a pair

(X ,L ) along with

1. a proper and flat morphism π : X → A1 = Spec(C[t]),

2. a Gm-action on X such that π is equivariant for the standard action (a, t) 7→ at

of Gm on A1,

3. a Q-line bundle L ∈ Pic(X )⊗Z Q that is π-ample and Gm-linearized on X ,

4. an isomorphism (X1,L1) ∼= (X,L) between the general fiber X1 := π−1(1) and

the original polarized variety.

The idea behind this definition comes from Geometric Invariant Theory (GIT). That

we are doing is to consider Gm-equivariant degenerations of a polarized variety, and

then performing a limit process. In summary, this process can be thought like use GIT

limits in the Hilbert scheme.

Example III.2.6. Let (X,L) be as in the previous definition.

1. The trivial test configuration (XA1 , LA1) := (X,L)× A1 is the one where the

action of Gm on XA1 is the product action, with the action on X being trivial

and the action on A1 being the standard action.

2. A product test configuration is (XA1 , LA1) as before, except that the action

of Gm on X is not necessarily trivial. If Aut◦(X) ∼= {1}, then every product

configuration is trivial.

3. Let Z ⊆ X be a closed subscheme and let σ : X := BlZ×0(X × A1) → X × A1.

Then π := prA1 ◦σ : X → A1 is a proper and flat morphism2. Also, X0 = E+F ,

where E = σ−1(Z × 0) is the exceptional divisor and where F ∼= BlZ(X) is the

strict transform of X × 0. If Z ⊆ X is Gm-invariant (e.g., by the trivial action on

X), then there is an induced action of Gm on X , and since −E is σ-ample, we

have that L := σ∗LA1 ⊗OX (−tE) is π-ample for 0 < t≪ 1. Thus, (X ,L ) is a

test configuration.

2Known as the deformation to the normal cone in Intersection Theory (see [Ful84, §5.1])
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4. Let r ∈ N≥1 be such that rL := L⊗r is very ample, i.e., ι : X ↪→ P(V ∨) is an

embedding, where V = H0(X, rL). A group morphism ρ : Gm → GL(V ) induces

a test configuration (Xρ,Lρ) where Xρ is the Zariski closure in P(V ∨)×A1 of the

image of X ×Gm ↪→ P(V ∨)×Gm, (x, a) 7→ (ρ(a)x, a) and where Lρ := 1
r
OX (1).

All test configurations of (X,L) are obtained in this way (Ross–Thomas, 2007).

Note the definition doesn’t require that a test configuration to be projective, so a

natural question is if it we can define canonically a compactification process for a test

configuration (this will be very important later in order to write the Donaldson-Futaki

invariant in terms of intersection numbers).

Construction III.2.7 (Compactification). Given a test configuration (X ,L ) of

(X,L), we can consider the Gm-equivariant families (X ,L ) → A1 and (X,L) ×
(P1\{0}) → (P1\{0}), where the Gm action on (X,L) × (P1\{0}) corresponds to the

product of the trivial action on (X,L) and the standard action on P1\{0}. We have a

Gm-equivariant isomorphism

(X \X0,L |X \X0)
∼= (X,L)× (A1 \ {0})

(p, s) 7→ (a−1 · p, a−1 · s)× {a}

where a = π(p), and therefore this isomorphism allows us to glue the two previous

families, obtaining the compactification π̄ : (X ,L ) → P1. This compactification has

the following properties:

1. the morphism π̄ : (X ,L )→ P1 is flat, proper, and Gm-equivariant.

2. the Q-line bundle L is π̄-ample and Gm-linearized.

3. the fiber over ∞ corresponds to
(
X ∞,L ∞

) ∼= (X,L).

Example III.2.8. Consider the product test configuration X = P1 × A1 induced by

the action

t · [x : y] = [tdx : y]

for some d ∈ Z and L = OP1(1) × A1. The compactification of this test by definition

results to be

X = P(OP1 ⊕ OP1(d))
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III.2.2 Donaldson-Futaki invariant

Here we will give a more understandable Donaldson-Futaki invariant, which is defined

in terms of weights of a group action. After that, we will derive an intersection formula

for this invariant, which will give the formula presented in Definition III.2.1. First, we

recall the following definition.

Definition III.2.9. Consider V a finite-dimensional k-vector space with an action

Gm ↷ V . The weight of the action is defined as

wt(V ) =
∑
λ∈Z

λ dim (Vλ) ,

where V =
⊕

λ∈Z Vλ is the weight decomposition of V where

Vλ := {v ∈ V |ξ · v = ξλv for all ξ ∈ Gm(k)}.

Remark III.2.10. If Gm acts on V , a vector space with dim(V ) = n, then there is an

induced Gm-action on det(V ) :=
∧n V , and it verifies wt(det(V )) = wt(V ). Indeed, if

s1, . . . , sn ∈ V is a basis and λ1, . . . , λn ∈ Z are such that ξ · si = ξλisi, then

ξ · s1 ∧ . . . ∧ sn = ξ
∑

i λis1 ∧ . . . ∧ sn

and thus wt(det(V )) = wt(V ).

From now on, we consider X as a complex projective variety with dim(X) = n, and

(X ,L ) a test configuration of a polarized pair (X,L). For m ∈ N such that mL is a

line bundle, we define

Nm := dim H0 (X0,mL0) and wm := wt H0 (X0,mL0)

It is known that the values Nm (the Hilbert polynomial of X0) are given by a polynomial

with rational coefficients of degree n. Furthermore, it is possible to prove that the values

of wm are given by a rational polynomial of degree n+ 1, so we have an expansion

wm

mNm

= F0 + F1m
−1 + F2m

−2 + . . .

for m > 0 sufficiently divisible.

99



Chapter III | K-stability

Definition III.2.11 (Futaki Invariant). The Donaldson-Futaki invariant of (X ,L ) is

defined as

DF(X ,L ) := −2F1

Example III.2.12. Consider the same product test configuration of Example III.2.8,

i.e., X = P1 × A1 induced by the action

t · [x : y] = [tdx : y]

for some d ∈ Z and L = OP1(1)× A1. In this case, we see that

H0(P1,OP1(m)) = C[X, Y ]m with t · (xkym−k) = tdkxkym−k,

so wm =
(

m(m+1)
2

)
d, Nm = m+ 1, and DF(X ,L ) = 0 (and thus P1 is not K-stable).

Lemma III.2.13. Let Gm ↷ P1 be the action given by t · [x : y] = [tx : y]. Given a

Gm-linearization of OP1(m), then

wt (OP1(m)0)− wt (OP1(m)∞) = m

where 0 := [0 : 1] and ∞ := [1 : 0].

Proposition III.2.14. If (X ,L ) is a test configuration of (X,L) and n = dim(X),

there exist ai, bi ∈ Q such that

Nm := dim H0 (X0,mL0) = a0m
n + a1m

n−1 + . . .+ an

wm := wt H0 (X0,mL0) = b0m
n+1 + b1m

n + . . .+ bn+1

for all m > 0 sufficiently divisible. Moreover,

a0 =
Ln

n!
and b0 =

L
n+1

(n+ 1)!

and if X is normal, also

a1 = −L
n−1 ·KX

2(n− 1)!
and b1 = −

L
n ·KX /P1

2n!

Proof. Serre’s vanishing theorem implies that

Hi(X t,mL t) = 0 ∀i > 0,m≫ 0, ∀t ∈ P1.

The cohomology base change theorem (see [Har77, Theorem II.12.11]) implies that for

an m such that the above holds, we also have that
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1. Riπ∗OX (mL ) = 0 for all i > 0.

2. π∗OX (mL ) is locally free.

3. π∗OX (mL )⊗ k(t)→ H0(Xt,mLt) is an isomorphism for all t ∈ P1.

Conditions (2) and (3) allow us to state that

Nm := dim H0 (X0,mL0) = dim H0 (X1,mL1) = dim H0(X,mL)

thus the statement aboutNm and the formulas for a0, a1 are obtained from the Riemann-

Roch theorem.

On the other hand, we can consider the line bundle det
(
π̄∗OX (mL )

)
, which is a Gm-

linearized bundle over P1. From condition (3), we deduce

wt
(
det
(
π̄∗OX (mL )

)
0

)
= wt

(
det H0 (X0,mL0)

)
= wm

and since Gm acts trivially on the fiber (X ,L )∞, we have wt
(
det
(
π̄∗OX (mL )

)
∞

)
=

0, and the previous lemma implies

det
(
π̄∗OX (mL )

)
≃ OP1 (wm)

The Hirzebruch-Riemann-Roch theorem for vector bundles on curves, combined with

conditions (1), (2), (3) and Leray’s direct image theorem, allows us to make the following

calculation

wm = deg (OP1 (wm)) = deg
(
π̄∗OX (mL )

)
= χ

(
P1,
(
π̄∗OX (mL )

)
− rk

(
π̄∗OX (mL )

)
= χ

(
P1,
(
π̄∗OX (mL )

))
−Nm

= χ
(
X ,OX (mL )

)
−Nm

The above allows us to conclude that the values wm are given by a polynomial with

rational coefficients of degree n+1, so we only need to find its coefficients. The coefficient

b0 is obtained directly from the Riemann-Roch theorem, as deg(Nm) = n. To finish,

note that

2Ln = 2L
n · OX (X1) = L

n · π∗OP1(2) = −L
n · π̄∗KP2

and from the Riemann-Roch theorem (assuming X is normal) we see that

wm =
L

n+1

(n+ 1)!
mn+1 − L

n ·KX + 2Ln

2n!
mn +O(mn−1)

The last two calculations allow us to deduce b1.
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Theorem III.2.15 (Wang-Odaka). If (X ,L ) is a test configuration of (X,L) and X

is normal, then

DF(X ,L ) =
L

n ·KX /P1

V
+ S̄

L
n+1

(n+ 1)V

where V = Ln and S = nV −1(−KX · Ln−1).

Proof. It suffices to note that DF(X ,L ) = 2(b0a1−b1a0)

a20
.

Since Wang-Odaka’s formula is valid for normal tests, we expect (and we need) to have

a way to normalize test configurations, and that the normalization be well-behaved in

terms of the Donaldson-Futaki invariant.

Construction III.2.16. Let (X ,L ) be a test configuration of a polarized variety

(X,L) with X normal. We define the normalization of (X ,L ) as (X̃ , L̃ ) where

ν : X̃ → X is the normalization morphism of X and L̃ := ν∗L . Indeed, this

result in a test configuration since the composition X̃ → X → A1 is proper and

flat, and by the universal property of normalization there exists a unique morphism

σ̃ : Gm × X̃ → X̃ such that the diagram

Gm × X̃ ∃! //

Id×ν

��

X̃

ν

��

Gm ×X //X

commutes and L̃ is ample over A1 since ν is finite. This implies σ̃ defines a Gm-action

on X̃ and since X |A1\{0} was already normal, we have an isomorphism X̃ |A1\{0} ∼=
X × (A1 \ {0}).

The previous construction is well-behaved for our purposes in the sense of the following

lemma.

Lemma III.2.17. Let (X,L) be a polarized variety. If (X ,L ) is a test configuration,

then

DF(X̃ , L̃ ) ≤ DF(X ,L ).

Proof. For reasons of notation, in this proof we denote the normalization by (X ν ,L ν),

and we denote ων
m = wtH0(X ν

0 ,mL ν
0 ), Nν

m = dimH0(X ν
0 ,mL ν

0 ). Note that for m >
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0 sufficiently divisible, proof of Proposition III.2.14 tells us Nν
m = H0(X,mL) = Nm

and also

wm = χ(X ,OX (mL ))−Nm.

We denote by ν : X
ν →X the normalization morphism of the compactified test. Now

consider the exact sequence

0→ OX → ν∗OX
ν → F → 0 /⊗ OX (mL )

0→ OX (mL )→ ν∗(OX
ν (mL

ν
))→ F ⊗ OX (mL )→ 0

where F := ν∗OX
ν/OX , and where we have used

(ν∗OX
ν )⊗ OX (mL ) = ν∗(OX

ν ⊗ ν∗OX (mL )) = ν∗OX
ν (mL

ν
).

As ν is an affine morphism, we have that Riν∗F = 0 for all i > 0, and then

H i(X
ν
,F ) = H i(X , ν∗F ) for all i ≥ 0. Using this and Serre’s vanishing theorem

we can compute

χ(X
ν
,OX

ν (mL
ν
)) = χ(X , ν∗OX

ν (mL
ν
))

= χ(X ,OX (mL )) + χ(X ,F ⊗ OX (mL ))

= χ(X ,OX (mL )) +H0(X ,F ⊗ OX (mL ))

As a result we obtain

wν
m = wm + dim H0

(
X ,F ⊗ OX (mL )

)
≥ wm

which permits to conclude DF(X ν ,L ν) ≤ DF(X ,L ).

Remark III.2.18. It is important to understand how these notions of stability are

related.

1. If there is a non-trivial Gm ↷ X action and a Gm-linearization of L, then (X,L)

is not K-stable. Indeed, the action and its dual action give rise to two non-trivial

test configurations (X ,L ), (X ′,L ′) that satisfy DF(X ,L )+DF (X ′,L ′) = 0,

so one of these numbers is non-positive.

2. If X is a Fano variety over C, then:

(a) (X,−KX) is K-polystable if and only if X admits a Kähler-Einstein metric.
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(b) (X,−KX) is K-stable if and only if X admits a Kähler-Einstein metric and

Aut(X) is finite.

(c) (X,−KX) is K-semistable if and only if there exists a test configuration

(X ,L ) of (X,−KX) such that X0 is a (possibly singular) Fano variety

that admits a Kähler-Einstein metric.

III.3 Valuations and Test Configurations

The aim of this section is to present a correspondence between test configurations of

polarized complex varieties (X,L) and valuations of its rational function field C(X).

The spirit behind this is the fact that the rational function field is a birational invariant,

so having such a correspondence would exhibit the birational nature of K-stability. This

section will be divided in the proof of the two following correspondences{
Test configurations

of (X,L)

}
↭

{
Filtrations of

R(X,L) := ⊕m≥0 H0(X,mL)}

}
↭

{
Valuations

of C(X)

}

These correspondences where deeply studied in [BHJ17].

III.3.1 Test configurations and Rees algebras

Here we discuss the first half of the correspondences. We start with the following

observation.

Remark III.3.1. Given a vector space V , there is a bijection between linear actions

of Gm on V and Z-gradings on V . Given an action of Gm on V , there is a weight

decomposition V = ⊕λ∈ZVλ where

Vλ := {v ∈ V, a · v = aλv for all a ∈ Gm}.

Conversely, a Z-grading V = ⊕λ∈ZVλ allows us to define a · v :=
∑
aλvλ, for any

v =
∑
vλ.

Definition III.3.2. Let V be a finite-dimensional vector space (e.g., H0(X,mL)). A

Z-filtration of V is a collection of subspaces {F λ}λ∈Z ⊆ V such that

1. F λ+1V ⊆ F λV for all λ ∈ Z, i.e., it is a decreasing filtration,
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2. F λV = 0 for all λ≫ 0, and

3. F λ = V for all λ≪ 0.

The Rees algebra associated with the filtration F • is the finitely generated and torsion-

free k[t]-module given by Rees(F •) := ⊕λ∈ZF
λV t−λ, with k[t]-module structure given

by t · (vt−λ) := vt−λ+1.

Construction III.3.3 (Rees correspondence). There is a bijective correspondence be-

tween {
Gm-linearized vector

bundles V → A1

}
←→

{
Z-filtrations of finite-dimensional

vector spaces V

}
.

Indeed, given a vector space V and a Z-filtration F •V , its Rees algebra R := Rees(F •)

induces a locally free sheaf R̃ on A1 = Spec(k[t]), and then it induces a vector bundle

V := V(R̃)→ A1. Since R admits a Z-grading compatible with the Z-grading of k[t],

we have that V → A1 is a Gm-linearized vector bundle.

Given a Gm-linearized vector bundle V → A1, there is an induced Gm action on its

global sections, which gives a weight decomposition

H0(A1,V ) =
⊕
λ∈Z

H0(A1,V )λ.

It is important to note that the Gm
∼= Spec(k[t, t−1])

def
= {t ̸= 0} ⊆ A1 action on the

global sections is given by the dual representation t ·σ(x) := σ(t−1 ·x) and thus t ∈ k[t]

acts with weight −1 on the k[t]-module H0(A1,V ), i.e., H0(A1,V )λ
·t−→ H0(A1,V )λ−1 is

an injective k[t]-module morphism.

We can construct F λV geometrically as follows: Let V := V1 be the general fiber of

V → A1 and
F λV := Im

(
H0(A1,V )λ

ev1−−→ V, s 7→ s(1)
)

where F λV ⊆ F λ−1V since ·t is an injective morphism. Also, F λV = 0 (resp. F λV = V )

for λ ≫ 0 (resp. λ ≪ 0) since H0(A1,V ) is a finitely generated k[t]-module (resp.

Im(H0(A1,V )λ
ev1−−→ V ) = V ).

Remark III.3.4. The above construction has two consequences that will help us with

calculations.
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1. Since V → A1 is Gm-equivariant, we have VA1\{0} ∼= V × (A1 \{0}). On the other

hand, since R⊗k[t] k[t]/⟨t⟩ ∼= R/tR, there is an isomorphism

V0
∼=
⊕
λ∈Z

F λV/F λ+1V
def
= gr•F V.

2. The inclusion H0(A1,V ) ∼=
⊕

λ∈Z F
λV t−λ ↪→ H0(A1 \ {0},V ) ∼=

⊕
λ∈Z V t

−λ

implies that

s ∈ F λV ⇔ st−λ ∈ H0(A1,V ), where s ∈ H0(A1 \ {0},V ) is a Gm-invariant

section such that ev1(s) = s.

To use filtrations in the context of test configurations (X
π−→ A1,L ) of a polar-

ized scheme (X,L), we consider r ∈ N≥1 such that rL ∈ Pic(X ) and denote

R := R(X, rL) :=
⊕

m∈NRm with Rm := H0(X,mrL) a finite-dimensional vector space.

Let’s see that we can construct a graded Z-filtration F •R, that is, a Z-filtration F •Rm

for all m ∈ N such that F λRm · F µRn ⊆ F λ+µFm+n. To do this, we note that:

1. By the projection formula, H0(X ,mrL ) ∼= H0(A1,V) where V := π∗(L ⊗mr) is a

Gm-linearized vector bundle.

2. There is a canonical restriction morphism ev1 : H0(X ,mrL ) →
H0(X ,mrL )t=1

∼= H0(X,mrL).

Thus, we can define F λ
X ,L H0(X,mrL) := Im

(
H0(X ,mrL )λ

ev1−−→ H0(X,mrL)
)

, and

this filtration is finitely generated. More precisely, the Rees correspondence gives us

an isomorphism of k[t]-modules

H0(X ,mrL ) =
⊕
λ∈Z

H0(X ,mrL )λ
≃−−→

Rees

⊕
λ∈Z

F λ H0(X,mrL)t−λ

compatible with the grading, and then⊕
n∈N

H0(X ,mrL ) ≃
⊕
n∈N

⊕
λ∈Z

F λ
X ,L H0(X,mrL)

def
= Rees(F •

X ,LR(X, rL)),

where the latter is a finitely generated k[t]-algebra since L is relatively ample over A1.

Theorem III.3.5. There is a correspondence3 between test configurations (X ,L ) of

the polarized variety (X,L) and graded Z-filtrations F • of R(X,L) for some r > 0.

3bijective, if we declare two filtrations equivalent if they coincide on H0(X,mL) for all m sufficiently

divisible.
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Proof. By the previous discussion, it suffices to note that Rees(F •
X ,LR(X, rL)) induces

the test configuration

X := Projn∈N

(⊕
n∈N

⊕
λ∈Z

F λ
X ,L H0(X,mrL)

)
π−→ A1

where the morphism π is obtained since the degree m = 0 component of the Rees

algebra is k[t]. By construction, π is projective and L := 1
k
OX (k) is a Q-ample line

bundle for k ≫ 0. Moreover, the fact that there is a Gm-equivariant isomorphism

(X ,L )|A1\{0} ≃ (X,L)× (A1 × {0}) follows from the above Remark.

Corollary III.3.6. Let (X ,L ) be a test configuration of the polarized variety (X,L).

Then, if X is reduced and irreducible, then X also is.

Proof. Let F •R, with R = R(X, rL) for r > 0, be the Z-filtration associated with

the test configuration (X ,L ) such that X ≃ Proj(Rees(F •R)). The result follows

directly from the fact that Rees(F •R) ⊆ R[t, t−1].

Fact: An analogous analysis, using the characterization of normality by Serre’s R1 and

S2 conditions, implies that if X is normal and X0 is reduced, then X is normal.

III.3.2 Valuations

Throughout this section, k will be an algebraically closed field with char(k) = 0.

Definition III.3.7. Let K/k be a finitely generated field extension, i.e., its transcen-

dence degree tr. degK/k < +∞ is finite. A (real) valuation is a function v : K× → R
such that

1. v(fg) = v(f) + v(g) for all f, g ∈ K×, i.e., v : K× → (R,+) is a group homomor-

phism.

2. v(f + g) ≥ min{v(f), v(g)} for all f, g ∈ K×.

3. v|k× = 0.

Additionally, we define v(0) = +∞.
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Context. Given a normal algebraic variety X over k, we consider K = K(X) the field

of rational functions of X, which is a finitely generated extension of k with tr. degK/k =

dim(X). We denote by ValX the set of all valuations of the extension K/k.

Definition III.3.8. For a valuation v of K/k, we define the following list of invariants.

1. The valuation ring Ov := {f ∈ K | v(f) ≥ 0}, a local ring with maximal ideal

mv := {f ∈ K | v(f) > 0}.

2. The residue field k(v) := Ov/mv.

3. The transcendence degree tr. deg(v) = tr. degk k(v).

4. The value group Γv := v(K×) ⊂ R and its rational rank rat. rk(v) := dimQ(Γv ⊗Z

Q).

Example III.3.9.

1. Let x ∈ X be a smooth point of a variety of dimension n. We define the order of

vanishing of a regular function f ∈ OX,x \ {0} at x as

ordx(f) := max{d ∈ N | f ∈ md
x}

We can extend this function to a valuation K× → R by defining

ordx(f/g) := ordx(f)− ordx(g).

In this case, we note that Γv = Z and therefore rat. rk(ordx) = 1.

2. Consider X = A2
x,y. Given f =

∑
a,b∈N ca,bx

ayb where ca,b ∈ k, we define the

valuation v of K(x, y) by

v(f) = min{a+ b
√

2 | ca,b ̸= 0}

The values v(x) = 1, v(y) =
√

2 are the weights of the action.

3. Divisorial valuations. A divisor E over X (see Definition I.4.1) corresponds to

a proper, birrational morphism µ : Y → X with Y normal and E ⊂ Y a prime
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divisor. In this situation, the local ring OY,E of E is a discrete valuation ring

(DVR), whose associated valuation is

ordE : K× → Z, f 7→ ordE(µ∗f)

i.e., it corresponds to computing the order of vanishing of the pullbacked function

along the subvariety E.

Definition III.3.10 (Center of a valuation). If v ∈ ValX is a valuation, the center of

v is the point ξ ∈ X such that v ≥ 0 on OX,ξ and v > 0 on mξ. The center of the

valuation v will be denoted cX(v).

Remark III.3.11. The fact that cX(v) exists is equivalent to X → Spec(k) being

proper, and if this center exists it is unique if X is a separated variety (cf. valuative

criterions of properness and separatedness).

Example III.3.12.

1. The valuation ordx associated with the order of vanishing at a smooth point

x ∈ X is a divisorial one, whose center corresponds to cX(ordx) = x. Indeed,

ordx = ordF where F corresponds to the exceptional divisor of the blow-up of X

at x. We can perform this calculation locally. Consider u1, . . . , un ∈ mx ⊂ OX,x

local coordinates, and a function f =
∑

α∈Nn cαu
α ∈ OX,x where uα = uα1

1 · · ·uαn
n .

By definition, d := ordx(f) = min{|α|, cα ̸= 0}. Consider the blow-up ε : X̃ :=

BlxX → X given by:

X̃
loc
= {(u, [y]) ∈ X × Pn−1 | uiyj = ujyi ∀i, j = 1, . . . , n}

In the open set yi ̸= 0 we have coordinates uj = uiyj, and the exceptional divisor

is given by F = {ui = 0}. We compute that

ε∗f(x1, . . . , xn) = udi f̃

for some regular function f̃ such that ui ∤ f̃ , so ordF (f) = d.

2. If E ⊂ X is a prime divisor of X with generic point ξ ∈ X, the valuation v = ordE

is such that v ≥ 0 on OX,ξ and v > 0 on its maximal ideal.

3. More generally, if E ⊂ Y
µ−→ X is a divisor over X then cX(v) = µ(E).

109



Chapter III | K-stability

The example of divisorial valuations raises the question of how to characterize a valu-

ation as divisorial. A theorem by Zariski shows that this can be done numerically in

terms of transcendence degree and rational rank. The proof of this fact is a consequence

of [KM98, Lemma 2.45].

Theorem III.3.13. Let v be a valuation of K. Then v is divisorial if and only if

tr. deg(v) = n− 1 and rat. rk(v) = 1.

Working locally, we can have a notion of valuating sections of line bundles.

Construction III.3.14. Let v ∈ ValX . Given a line bundle L ∈ Pic(X) we can make

sense of v(s) for sections s ∈ H0(X,L):

In a neighborhood U of the center ξ = cX(v) we can trivialize L, i.e., fix an isomorphism

L|U ∼= U×A1 in which a local section s ∈ H0(U,L|U) is represented by a regular function

s : U → A1. In this way we can define v(s) by evaluating this local representation,

which is well-defined since two trivializations of L differ by a unit a ∈ k×, and therefore

if s′, s′′ are two local representations of a section s we have s′ = as′′ for some a ∈ k×,

and then v(s′) = v(as′) = v(s′′). Furthermore, v(s) > 0 if and only if s(ξ) = 0.

Similarly, we can evaluate v on a Cartier divisor D by considering the valuation of the

local equation of D around cX(v).

Since the function field is a birational invariant, any test configuration (X ,L ) of a

polarized pair (X,L) has function field k(X ) ∼= K(X)(t) since X \X0
∼= X×(A1\{0}).

Thus, it becomes natural to study valuations of K(X)(t).

Theorem III.3.15 (Generalized Abhyankar’s inequality). Let k ⊂ K ′ ⊂ K be field

extensions, and let v be a valuation of K/k. Then

tr. deg(v) + rat · rk(v) ≤ tr. deg (v′) + rat. rk (v′) + tr. degK/K ′

where v′ = v|K′ is the restriction of the valuation v to K ′.

Proposition III.3.16. Let v be a valuation of K(X)(t). If v is divisorial, its restriction

r(v) = v|K(X) to K(X) is either divisorial or trivial.

Proof. Abhyankar’s inequality implies that

tr. deg(v) + rat. rk(v) ≤ tr. deg(r(v)) + rat. rk(r(v)) + 1 ≤ n+ 1
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Since v is divisorial, in particular tr. deg(v) + rat. rk(v) = n+ 1, so

tr. deg(r(v)) + rat. rk(r(v)) = n

It is clear that rat. rk(r(v)) ≤ rat. rk(v) = 1, from which we conclude.

Remark III.3.17. There is a natural action Gm ↷ K(X)(t) given by

a · f =
∑
λ∈Z

a−λfλt
λ

where f =
∑

λ∈Z fλt
λ with fλ ∈ K(X).

The following notion of equivariant valuations results to be very useful to understand

valuations of X × A1.

Definition III.3.18. A valuation of K(X)(t) is Gm-equivariant if v(f) = v(a · f) for

every f ∈ K(X)(t), a ∈ Gm. We denote by ValGm

X×A1 the set of equivariant valuations of

X × A1.

Example III.3.19. Let w be a valuation of K(X) and s ∈ R≥0. We can define a

valuation ws of K(X)(t) by

ws(f) := min{w(fλ) + λs}

where f =
∑

λ∈Z fλt
λ.

1. This valuation is Gm-equivariant, given that

w(a−λfλ) = w(a−λ) + w(fλ) = w(fλ) ∀a ∈ Gm

2. If w has a center in X then

cX×A1(ws) =

cX(w)× 0 if s > 0

cX(w)× A1 if s = 0

Note that there is a bijection between the valuations of X and the Gm-equivariant

valuations of X × A1, given explicitly by

ValX ×R←→ ValGm

X×A1

(w, s) 7−→ ws

(v|K(X), v(t))←− [ v
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Now we use our knowlegde of valuations to establish a link with test configurations.

Let (X ,L ) be a normal test configuration of (X,L). We have a canonical birational

map X 99K X×A1, and we consider Y as the normalization of the graph of this map.

Then there is a diagram
Y

f

~~

g

$$

X // X × A1

,

and given E ⊂ X0 an irreducible component of X0, this induces a divisorial valuation

ordE of the field K(X)(t), whose restriction to K(X) will be denoted vE = r(ordE). In

this context, we can rewrite the graded Z-filtration associated to a test configuration

in terms of valuations.

Proposition III.3.20. For m > 0 sufficiently large

F λ
X ,L H0(X,mL) =

⋂
E⊂X0

{
s ∈ H0(X,mL) | vE(s) +m ordE(D) ≥ λ ordE(t)

}
where D denotes the Q-divisor on Y supported on Y0 such that f ∗L ∼= g∗(L×A1)+D.

Proof. Recall that the filtration of H0(X,mL) defined earlier corresponds by definition

to

F λ
X ,L H0(X,mL) =

{
s ∈ H0(X,mL) | t−λs̄ ∈ H0(X ,mL )

}
where s ∈ H0(X \X0,mL ) denotes the Gm-invariant section such that its restriction

to t = 1 is s1 = s. At the same time, it defines a rational section of LA1 = L × A1,

which we denote smL and smLA1
. Now, since X is normal, st−λ ∈ H0(X ,L ) if and

only if ordE(st−λ) ≥ 0 for all E irreducible components of X0. We calculate that

ordE

(
st−λ

mL

)
= ordE (smL )− λ ordE(t) = ordE(sf∗mL )− λ ordE(t)

= ordE(sg∗mLA1 (D))− λ ordE(t)

= ordE(sg∗mLA1
) +m ordE(D)− λ ordE(t)

def
= vE(s) +m ordE(D)− λ ordE(t)

112



Chapter III | K-stability

III.4 K-stability and the Minimal Model Program

In this section we will discuss generally speaking some intrinsic relationships that have

been discovered between K-stability and the singularities appearing on the MMP. The

ideas and results presented here are mainly the work of Y. Odaka, presented in [Oda13a,

Oda12, Oda13b].

Theorem III.4.1 ([Oda13a, Theorem 4.1],[Oda12, Theorem 2.10],[Oda13b, Theorem

1.2]). Let X be a projective normal variety and L ∈ Pic(X)Q ample. Then,

1. If KX ∼Q 0, then X is klt (resp. lc) ⇔ (X,L) is K-stable (resp. K-semistable).

2. If L = KX , then X is lc ⇔ (X,L) is K-stable ⇔ (X,L) is K-semistable.

The fact that a K-semistable variety has only log-canonical singularities is an astonish-

ing fact, and is the content of [Oda13b, Theorem 1.2]. As an illustration, here we show

the forward implications of the previous theorem.

We begin by modifying the intersection formula for the Donaldson-Futaki invariant.

Let (X ,L ) be a normal test configuration of (X,L). We have

Y
f

~~

g

##

X // X × P1

where Y corresponds to the normalization of the graph of the birational map X 99K

X × P1.

Proposition III.4.2. With the above notation,

DF(X ,L ) =
L

n · f∗
(
KY /X×P1 + g∗ pr∗1KX

)
V

+ S̄
L

n+1

(n+ 1)V

where S := nV −1 (−KX · Ln).

Proof. By Wang-Odaka’s formula, it suffices to prove that:

f∗
(
KY /X×P1 + g∗ pr∗1KX

)
= KX /P1 .

To do this, observe that:

KY /X×P1 + g∗ pr∗1KX = KY − g∗ (KX×P1 − pr∗1KX)

= KY − g∗ pr∗2 (KP1)

= KY − f ∗π∗ (KP1) .
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Finally,

f∗
(
KY /X×P1 + g∗ pr∗1KX

)
= f∗KY − f∗f ∗π∗ (KP1) = KX − π

∗KP1 = KX /P1 .

Proposition III.4.3.

1. If X is lc, then KY /X ×P1 is effective.

2. If X is klt, then KY /X ×P1 is effective and has support on Y0.

Proof. Let X be lc. Then (X×P1, X×0) is lc. Indeed, if f : Y → X is a log resolution

of X, then KY/X =
∑

i aiEi for certain prime divisors Ei ⊂ Y such that ai ≥ −1. Now,

fP1 : Y × P1 → X × P1 is a log resolution of (X × P1, X × 0) and

KY×P1/X×P1 − f ∗
P1(X × 0) =

r∑
i=1

aiEi − Y × 0

has coefficients ≥ −1. Thus, the pair (X × P1, X × 0) is lc. Moreover, since

KY /X×P1 − g∗(X × 0) = KY /X×P1 − Y0

has coefficients ≥ −1 and since Supp
(
KY /X×P1

)
⊂ Exc(g) = Y0, it follows that

KY /X×P1 has coefficients ≥ 0. If X is klt, note that no Ei ⊂ Exc(g) vanishes since

a(Y0, X × P1) > −1.

Proof of (⇒) in Theorem 4.1.1. Fix (X ,L ) a non-trivial test configuration. Suppose

X is lc with KX ∼Q 0. Then, the Donaldson-Futaki invariant reduces to

DF(X ,L ) =
L

n · f∗
(
KY /X×P1

)
V

.

Now, since f∗(KY /X×P1) is effective with Supp
(
f∗KY /X×P1

)
⊂ X0,red and L |Y0 is

ample, it follows from the Nakai-Moishezon criterion that L
n · f∗

(
KY /X×P1

)
≥ 0, and

hence X is K-semistable.

Now, suppose X is klt. Note that the condition codim (Exc (X 99K X×A1)) ≥ 2

implies that (X ,L ) is trivial. In this case, codim(Exc(X 99K X×A1)) = 1, so

f∗(KY /KX×P1) = X0 and f∗(KY /KX×P1) ̸= 0. Thus, DF(X ,L ) > 0 when (X ,L ) is

non-trivial. This completes the case when KX ∼Q 0.

Assume L = KX and that X is lc. Thus, the intersection formula results in:

DF(X ,L ) =
L

n · f∗
(
KY /X×P1

)
V

+

(
f ∗L

n · g∗LA1

)
− n

n+1
L

n+1

(n+ 1)V
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By the same argument used earlier, the first term is ≥ 0. The fact that the second

term is > 0 is a consequence of [BHJ17, Proposition 7.8] and uses non-Archimedean

methods.

The following is a more general statement about the singularities of a K-semistable

variety.

Theorem III.4.4 ([Oda13b, Theorem 1.2]). Let X be a normal variety with KX a

Q-Cartier divisor and L an ample Q-line bundle on X. If (X,L) is K-semistable, then

X is lc.

The proof of this amazing theorem requires a considerable amount of techniques from

the Minimal Model Program, and the strategy of the proof consists in to show that

if X is not lc, then (X,L) admits a destabilizing test configuration, i.e., such that it

has negative Donaldson-Futaki invariant. The key statement in this direction is the

existence of a log canonical model.

Theorem III.4.5 ([OX12]). If X is a normal variety such that KX is Q-Cartier, then

there exists a proper birational morphism f : Y → X such that

1. (Y,∆Y := Exc(f) = E1 + . . .+ Ek) is lc.

2. KY + ∆Y is f -ample.

The pair (Y,∆Y ) is known as the log canonical model of X, and it is unique up to

isomorphism.

Example III.4.6. Let X = {h = 0} ⊂ An+1 with an isolated singularity at the

origin, i.e., h is homogeneous. The blow-up of X at 0 gives a log resolution Y → X

with KY/X ∼ (n − deg(h))F with F an exceptional divisor. Thus, X is not lc when

deg(h) > n+ 1, and then Y satisfies the conditions of Odaka-Xu’s theorem.

Idea of the proof of Theorem III.4.4. We will assume that X is not lc and show that

there is a test configuration (X ,L ) such that DF(X ,L ) < 0. Consider Y the log

canonical model of X and the divisor E := KY/X + ∆Y . Since E is nef, the negativity

lemma (see [KM98, Lemma 3.39]) implies that −E is effective. Consider the ideal sheaf

I := f∗OY (−mE) for m > 0 sufficiently divisible, and Z ⊂ X the closed subscheme
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defined by the ideal I . Then4 Y ∼= BlZ(X), so E = Exc(f), and hence KY/X =

−E − ∆Y has all its coefficients < −1. Given the closed Z ⊂ X above, consider now

the ideal:
I = IZ×A1 + tNOX×A1 ⊂ OX×A1

where N ∈ N≥1, and we define X as the normalization of the blow-up of X ×A1 along

I :
X := B̃lIX × A1 g−→ X × A1.

We can write I · OX = OX (−F ) for some Cartier divisor F ∈ Pic(X ), and we then

have that Lε := g∗LA1 − εF is ample over A1 for 0 < ε ≪ 1 and thus (X ,Lε) is a

test configuration of (X,L), which indeed satisfies that KX /X×A1 has (for N sufficiently

large) only negative coefficients.

We then claim that DF(X ,Lε) < 0 when 0 < ε≪ 1. Indeed, the intersection formula

implies

DF (X ,Lε) =
L

n

ε ·KX /X×P1

V
+

L
n

ε g
∗p∗1KX

V
+

S̄

n+ 1

L
n+1

ε

V
,

resulting in DF (X ,Lε) being a polynomial in ε, and it suffices to analyze the lower

order term. This last analysis is done by Odaka, who proves that

DF (X ,Lε) = cεd + higher order terms,

for some rational number c < 0. This proves that for ε ≪ 1, the test configuration

(X ,L ) is destabilizing, and hence (X,L) is not K-semistable.

We conclude this section by stating a klt version of Theorem III.4.1.

Theorem III.4.7 ([Oda13b, Theorems 1.4-1.5]).

1. If X is Fano and (X,−KX) is K-semistable, then X is klt.

2. If X is Calabi-Yau and (X,L) is K-semistable, then X is klt.

Remark III.4.8. The last theorem is crucial to the study of K-stability, because rep-

resent a bound in the family of varieties we have to delve: it is enough to study klt Fano

varieties.

4For more details, see [BHJ17, Lemma 1.13].
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III.5 Valuative criterion of K-stability

The goal of this section is to prove the valuative criterion of K-stability, which provides

an amazing tool to show whether a variety is (or not) K-stable. Using the ideas in-

troduced in §III.3, we will be able to rewrite the K-stability property as a numerical

condition on divisors over the variety. Initially, K. Fujita and C. Li found a valua-

tive criterion in [Li17, Fuj19b], which characterizes K-semistability, and afterwards in

[BX19] characterizations of K-(poly)stability were given.

Let (X,L) be a polarized normal projective variety of dim(X) = n, and let (X ,L )
π−→

A1 be a test configuration.

Recall III.5.1. We saw that an irreducible component E ⊆ X0 defines a Gm-

equivariant divisorial valuation ordE ∈ ValGm

X×A1 , and we defined vE := ordE |K(X).

Additionally, by normalizing the graph of the natural rational map between X and the

trivial test configuration, we obtain a diagram

Y
f

~~

g

$$

X // X × A1

where f ∗L ≃ g∗LA1 +D with Supp(D) ⊆ Y0.

In this context, we have already seen that

F λ
X ,L H0(X,mL) =

⋂
E⊂X0

{s ∈ H0(X,mL) : ordF (st−λ)
def
= vF (s)+

=λ1fixed︷ ︸︸ ︷
m ordF (D)−

=λ2fixed︷ ︸︸ ︷
λ ordF (t) ≥ 0}.

Definition III.5.2. Let v = ordE : K(X)∗ → Z be a divisorial valuation induced by a

divisor over E ⊆ Y
µ−→ X. Then, v filters the algebra R := R(X,L)

def
=
⊕

m≥0 H0(X,mL)

by defining
F λ
v H0(X,mL) := {s ∈ H0(X,mL), v(s) ≥ λ}.

Warning. The numerical characterization of Zariski divisorial valuations does not

only consider surjective valuations. More precisely, if v : K(X)∗ → Z is divisorial and

Im(v) = cZ with c ∈ N≥1 then v = c ordE. Thus, in the previous definition, v(s) ≥ λ if

and only if ordE(s) ≥ ⌈λ
c
⌉.

Definition III.5.3 ([Fuj19b]). We say that v = c ordE (or that the divisor E) is

dreamy if F •
vR(X,L) is finitely generated, i.e., the Rees algebra

Rees(F •
vR) ∼=

⊕
m∈N, λ∈Z

H0(Y,mµ∗L− ⌈λ
c
⌉E)

is finitely generated.
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Example III.5.4 ([BCHM10]). If Y is log-Fano (i.e., there exists ∆Y ≥ 0 effective

with coefficients ≤ 1 such that (Y,∆Y ) is klt5 and −(KY + ∆Y ) is ample), then every

divisor E ⊆ Y is dreamy (Y is a Mori Dream Space).

Theorem III.5.5. Consider (X,L) with X Fano klt and L = −KX . Then, there is a

bijection between:

1. Normal test configurations (X ,L ) of (X,L) with L = −KX /A1 and X0 re-

duced and irreducible.

2. Dreamy divisorial valuations v : K(X)∗ → Z.

Proof. (1) 7→ (2) is given by X0 7→ vX0

def
= ordX0 |K(X). Here, L ∼= −KX /A1 and the

filtration induced in R = R(X,L) is given by

F λ
X ,L H0(X,mL) = {s ∈ H0(X,mL), vX0(s) +m ordX0(D) ≥ λ ordX0(t)},

with ordX0(D) := −A, ordX0(t)
def
= 1, i.e., F λ

X ,L H0(X,mL) = F λ+mA
vX0

H0(X,mL) and

R(X ,L ) := Rees(F •
X ,LR) ∼= Rees(F •

vX0
R) as k[t]-algebras. Since R(X ,L ) is finitely

generated, vX0 is a dreamy valuation.

(2) 7→ (1) is given by v 7→ X := ProjA1(Rees(F •
vR)). Here, X0 is given by the Proj of

the algebra

Rees(F •
vR)⊗k[t] k[t]/⟨t⟩ ∼=

Rees(F •
vR)

t · Rees(F •
vR)

def
=

⊕
m∈N, λ∈Z

F λ
v H0(X,mL)

F λ+1
v H0(X,mL)

def
=

⊕
m∈N, λ∈Z

grλFv
H0(X,mL).

Given that if s, t ̸= 0 have degrees λ and µ, respectively, then st is nonzero of degree

λ + µ, and we deduce that X0 is irreducible and reduced. In particular, since X is

normal, X is irreducible and normal. Finally, the previous construction implies that

(X ,L ) satisfies vX0 = v.

Warning. In the previous context:

5i.e., the pair (Y,∆Y ) is dlt.
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1. Since L = −KX /A1 and KA1 = 0 then D
def
= −g∗(LA1) + f ∗L

def
= g∗(KX×A1) −

f ∗(KX ) ± KX
def
= KX /X − KX /(X×A1). Then, if X̃0 = f ∗X0 it follows that by

definition of log-discrepancy

−A def
= ordX0(D) =

def
=0︷ ︸︸ ︷

coeffX̃0
(KX /X )− coeffX̃0

(KX /(X×A1))

def
= −(AX×A1(X̃0)− 1) = 1− (cAX(E) +

def
=1︷ ︸︸ ︷

ordX0(t)),

and thus A = cAX(E)
def
= AX(vX0), where vX0 = c ordE is a divisorial valuation

on X induced by X0.

2. Li and Xu proved in [LX14], that it suffices to check K-stability of Fano varieties by

considering special test configurations (X ,L ), i.e., those with L = −KX /A1

and X0 a klt Fano variety.

Definition III.5.6 (β-invariant). Let X be a klt Fano variety and r ∈ N≥1 such that

−rKX is Cartier. For v := c ordE : K(X)∗ → Z a divisorial valuation, we define the

invariant β(v) := AX(v)− SX(v), where

SX(v) = lim sup
m→+∞

∑
λ∈Z λ dim grλFv

H0(X,−mrKX)

m dim H0(X,−mrKX)

and where AX(v) = cAX(E), with AX(E) the log-discrepancy of the divisor E ⊆ Y
µ−→

X.

Proposition III.5.7. Let v = c ordE (i.e., v = vX0

def
= ordX0 |K(X)) a dreamy valuation,

and (X ,L ) the associated test configuration, with X0 reduced and irreducible. Then,

DF(X ,L ) = AX(v)− SX(v) = c(AX(E)− SX(E)).

Proof. Let (X ,L )
π−→ P1 be the associated projective test configuration. Considering

L = −KX and L = −KX /P1 the formula for the Donaldson-Futaki invariant using

wm/mNm = F0 + F1m
−1 + · · · reduces to

DF(X ,L )
def
= −2F1 = − 1

(n+ 1)(−KX)n
(−KX /P1)n+1 def

= − b0
a0

def
= −F0.
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And the term F0 is simply calculated by observing that if v = vX0 = c ordE then

wm
def
= wt H0(X0,−mKX /A1|X0)

def
=
∑
λ∈Z

λ dim grλFX ,L
H0(X,−mKX)

=
∑
λ∈Z

λ dim grλ+mA
Fv

H0(X,−mKX)

=
∑
λ∈Z

(λ−mA) dim grλFv
H0(X,−mKX)

= −mAX(v) dim H0(X,−mKX)︸ ︷︷ ︸
def
=Nm

+
∑
λ∈Z

λ dim grλFv
H0(X,−mKX)

and then −F0 = − lim supm→+∞
wm

mNm
= AX(v)− SX(v).

Theorem III.5.8. If X is a klt Fano variety of dim(X) = n and E ⊆ Y
µ−→ X is a

prime divisor over X then

SX(E) =
1

(−KX)n

∫ τ

0

vol(−µ∗KX − tE) dt

where τ = sup{t ∈ R≥0, −µ∗KX − tE big divisor} is the pseudo-effective threshold.

Proof. Let v = ordE and assume that −KX is Cartier (to avoid writing −rKX through-

out the proof). If vλ := dimF λ
v H0(X,−mKX), we obtain a telescoping sum that cal-

culates
∑

λ∈Z λ grλFv
H0(X,−mKX)∑

λ∈Z

λ(vλ−vλ+1) =
+∞∑
λ=0

vλ
def
=

+∞∑
λ=1

h0(Y,−mµ∗KX−λE)
def
=

∫ +∞

0

h0(Y,−mµ∗KX−⌈t⌉E) dt,

and thus ∑
λ∈Z

λ grλFv
H0(X,−mKX) = m

∫ +∞

0

h0(Y,−mµ∗KX − ⌈mt⌉E) dt.

Then, SX(E) is given by

lim sup
m→+∞

∫ +∞

0

h0(Y,−mµ∗KX − ⌈mt⌉E)/(mn/n!)

h0(X,−mKX)/(mn/n!)
dt =

∫ +∞

0

vol(−µ∗KX − tE)

vol(−KX)
dt

def
=

∫ τ

0

vol(−µ∗KX − tE)

(−KX)n
dt

by the Dominated Convergence Theorem.

The above can be summarized in the following fundamental result6, by Chi Li (2017)

and Kento Fujita (2019).

6Our calculations, along with the Li-Xu Theorem (2014), allow proving it for dreamy divisors.

Moreover, Blum, Liu, Xu, and Zhou proved in 2019 that if βX(E) < 0 for an arbitrary divisor E, then

this inequality holds for a dreamy divisor.
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Theorem III.5.9 (Valuative criterion for K-stability, [Fuj19b, BX19]). Let X be a klt

Fano variety. Then, X is K-stable (resp. K-semistable) ⇔ βX(E) > 0 (resp ≥ 0) for

every (dreamy) divisor E over X.

Example III.5.10. Let X := Blp(P2)
ε−→ P2 with exceptional divisor E ⊆ X and let L

be the pullback of a line. Then, KX = ε∗KP2 + E = −3L + E and we then calculate

SX(E) as

SX(E) =
1

(−KX)2

∫ +∞

0

vol(−KX − tE) dt =
1

8

∫ τ

0

vol(3L− E − tE) d t

=

∫ 2

0

(9− (1 + t)2) dt

=
7

6
.

Since E and X are smooth, AX(E) = 1 and thus βX(E) = 1 − 7
6

= −1
6
< 0. Hence,

X is not K-semistable (and therefore not K-polystable either) and thus Blp(P2) does

not admit Kähler-Einstein metrics.

Example III.5.11 ([Fuj18]). Let X be a K-semistable klt Fano variety and let p ∈ X
be a smooth point. Let ε : Y := Blp(X) → X with exceptional divisor E ⊆ Y , where

AX(E) = (n− 1) + 1 = n and where it holds7 that

volY (ε∗(−KX)− tE) ≥ (−KX)n − tn

and thus

βX(E) = AX(E)− SX(E) = n− SX(E) ≥ 0

is equivalent to

n ≥ 1

(−KX)n

∫ ∞

0

volY (ε∗(−KX)− tE) dt ≥ 1

(−KX)n

∫ n
√

(−KX)n

0

((−KX)n − tn) dt

=
n

n+ 1
n
√

(−KX)n

and thus we have that X satisfies the inequality (−KX)n ≤ (n+ 1)n.

Remark III.5.12. The inequality (−KX)n ≤ (n + 1)n is true for every smooth Fano

variety of dim(X) = n ≤ 3, but X = P(OPn−1 ⊕ OPn−1(n)) does not satisfy it for

n ≥ 4 (and thus is not K-semistable). Furthermore, using results by Yuchen Liu and

Ziquan Zhuang (see [Fuj18]), it can be proved that in the K-semistable case the equality

(−KX)n = (n+ 1)n is equivalent to X ∼= Pn.
7It suffices to compare dimensions in the exact sequence 0 → H0(X,OX(−mKX) · mmt

p ) →
H0(X,−mKX)→ OX/m

mt
p → 0.
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III.6 Invariants α and δ and the Abban-Zhuang es-

timate

In this section, two different techniques for proving K-stability will be illustrated, for

which the invariants α and δ will be introduced. Tian’s α-invariant, introduced in

[Tia87], gave a characterization of the existence of Kahler-Einstein metrics on smooth

Fano varieties. The original definition, of analytic nature, is different than the presented

here8. Besides, δ-invariant introduced in [FO18], give another characterization of this

fact. In the following we discuss these two invariants and their relationship.

Construction III.6.1 ([FO18, BJ20]). The valuative criterion for K-stability states

that a klt Fano variety is K-stable (resp. K-semistable)⇔ δ(X) > 1 (resp. ≥ 1), where:

δ(X) := inf
E⊆Y

µ−→X

AX(E)

SX(E)
,

i.e., the infimum is taken over all divisors over X. The δ-invariant was originally

defined by Fujita-Okada as a certain limit of log-canonical thresholds of m-basis type

divisors and then Blum-Jonsson proved that it coincided with the previous expression,

and additionally it satisfies:

n+ 1

n
α(X) ≤ δ(X) ≤ (n+ 1)α(X),

where n = dim(X) and where

α(X) = inf{lct(X,D), 0 ≤ D ∼Q −KX}

is the α-invariant of Tian, where

lct(X,D) = sup{c ∈ R≥0, (X, cD) is lc}.

Theorem III.6.2 ([Tia87]). Let X be a klt Fano variety of dimension n = dim(X). If

α(X) > (≥)
n

n+ 1
then X is K-(semi)stable.

Example III.6.3. We will use Tian’s criterion to prove that a degree 1 del Pezzo

surface X is K-stable. Recall that X ∼= Blp1,...,p8(P2) is the blow-up of P2 at 8 points in

8Demailly and Kollár proved that both definitions agree.
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general position9. Denoting ε : X → P2 the blow-up, the canonical divisor corresponds

to:
−KX = ε∗(−KP2)−

8∑
i=1

Ei

where Ei are the exceptional divisors. Thus, the linear system | −KX | corresponds to

the linear system of (strict transforms of) cubics passing through p1, . . . , p8.

Consider D ∼Q −KX (i.e., there exists m ∈ N such that mD ∼ (−KX) are linearly

equivalent) and note that D is reduced (i.e., it can only have multiplicities of 1). Indeed,

if Supp(D) ∈ | −KX | this is directly true since D ∼ Supp(D) (considering Supp(D) as

a cycle). If Supp(D) /∈ | −KX |, since −KX is free of base points, for any x ∈ D there

exists C ∈ | −KX | with x ∈ D. Then

D · C = (−KX)2 = 1

and therefore D must be reduced. This fact implies that it suffices to compute the

lct when D is a curve. The condition of passing through p1, . . . , p8 implies that D is

irreducible, and then the possibilities are reduced to:

D smooth: lct(X,D)
def
= sup{c ∈ R≥0, 1− ordE(cD) ≥ 0} = 1

D nodal: lct(X,D) = 1

D cusp: lct(X,D) =
5

6

The involved log-canonical thresholds were calculated in the Example I.4.16. In any

case, α(X) > 2/3 and therefore X is K-stable.

Remark III.6.4. I. Cheltsov (see [Che08]) shows that α(X) ≥ 2/3 for every del Pezzo

surface of degree ≤ 4. Moreover, K. Fujita (see [Fuj19a]) shows that α(X) = n
n+1

implies K-stability for smooth Fano varieties.

Using the language of filtrations, valuations, and Newton-Okounkov bodies, Abban and

Zhuang (see [AZ22]) prove one of the most currently used methods to estimate the δ-

invariant via adjunction. The first observation is that the valuative criterion allows

extending the definition of K-stability to log Fano pairs.

9This means that there are no 3 collinear points, no 6 points lying on a conic, and there is no nodal

or cuspidal cubic passing through the 8 points such that one of them is exactly the singular point.
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Definition III.6.5. Given a log Fano pair (X,∆) of dimension n = dim(X) and a

divisor E ⊂ Y
µ−→ X over X, we define

δ(X,∆;E) =
A(X,∆)(E)

S(X,∆)(E)

where

S(X,∆)(E) =
1

(−KX −∆)n

∫ ∞

0

vol(µ∗(−KX −∆)− tE) dt

We say that (X,∆) is K-stable (resp. K-semistable) if

δ(X,∆) = inf{δ(X,∆; (E), E ⊂ Y
µ−→ X divisor over X} > 1 (≥ 1).

Remark III.6.6. If X is an algebraic variety and L ∈ Pic(X) is ample, V• := {Vm =

H0(X,mL)}m≥0 is the associated linear serie, and if E ⊂ Y → X, the filtration

(FEVm)t := {s ∈ Vm, ordE(s) ≥ mt} is defined and

vol(FEVm)t = lim
m→+∞

dim((FEVm)t)

mn/n!
.

Then

S(V•, E) :=
1

vol(V•)

∫ +∞

0

vol(FEVm)t dt = S(X,∆)(E),

considering L = −KX −∆.

Construction III.6.7 (Abban-Zhuang, [AZ22]). Let (X,∆) be a klt pair with ∆ ≥ 0,

and let E ⊆ Y
µ−→ X be a divisor over X of plt type, i.e., −E is µ-ample and (Y,∆Y +E)

is a plt pair10, where ∆Y is defined by the condition

KY + ∆Y = µ∗(KX + ∆) + (A(X,∆)(E)− 1)E.

If ∆E is the different of ∆Y on E (that is, KE + ∆E = (KY + ∆Y + E)|E) then

δZ(X,∆;V•) = inf
F, Z⊆cX(F )

A(X,∆)(F )

S(V•, F )

verifies the condition

δZ(X,∆;V•) ≥ min

{
A(X,∆)(E)

S(V•, E)
, inf
Z′
δZ′(E,∆E;WE

•,•)

}
,

with Z ′ ⊂ Y ranging over the subvarieties of Y such that µ(Z ′) = Z, and where

δZ′(E,∆E;WE
•,•) = inf

F, Z′⊆cE(F )

A(E,∆E)(F )

S(WE
•,•;F )

.

10Recall that (X,∆) is plt (resp. klt) if AX,∆(E) > 0 (resp. AX,∆(E) > 0 and ⌊∆⌋ ≤ 0) for every

divisor E over X.
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The term S(WE
•,•;F ) is obtained analogously to S(V•, E) but considering the refined

linear serie given by

WE
m,j := Im(H0(Y,−m(KX + ∆)− jE)→ H0(E,−m(KE + ∆E)− jE|E)).

In practice, this volume can be calculated or estimated using the notion of restricted

volume defined by Lazarsfeld and collaborators, which in turn is shown to be calculable

using slices of Newton-Okounkov bodies. The latter, in the case of surfaces, is calculated

using the Zariski decomposition.

Remark III.6.8. By definition, δ(X,D;V•) = infZ⊂X δZ(X,D;V•). In particular, the

condition δp(X,D;V•) ≥ 1 for every p ∈ X implies that X is K-semistable.

From now on, X will be a surface and E ⊂ Y → X will be a smooth curve11 fixed

on X. In this case, Z ′ (which is a subvariety in E) will be a point Z ′ = p such that

p ∈ cE(F ), i.e., p = F . We need to calculate

δp(E,DE,W
E
•,•) =

A(E,DE)(p)

S(WE
•,•; p)

=
1− ordp(DE)

S(WE
•,•; p)

where we have used that E is smooth. Let τ = sup{u ∈ R≥0, µ∗(−KX − D) −
uE is pseudo-effective}, and consider the Zariski decomposition

µ∗(−KX −D)− uE = P (u)︸ ︷︷ ︸
nef

+ N(u)︸ ︷︷ ︸
negative

.

We will assume that Supp(E) ⊈ N(u) for every u (for simplicity). In such a case, we

have a flag {p} ⊂ E ⊂ Y , whose Newton-Okounkov body allows calculating the volume

of the divisor12:

S(WE
•,•; p) =

dim(X)

vol(L)

∫ τ

0

∫ +∞

0

vol(P (u)|E − vp) dv du

=
2

(−KX −D)2

∫ τ

0

∫ t(u)

0

max{ordp(P (u)|E)− v, 0} dv du

Example III.6.9. Using the Abban-Zhuang method, we will prove that every cubic

surface is K-semistable. Let X be a cubic surface, p ∈ X and E ∈ | −KX | an elliptic

curve (smooth) such that p ∈ E and E|E = 3p. Here, D = 0 and due to smoothness

AX(E) = 1. We calculate

SX(E) =
1

(−KX)2

∫ +∞

0

vol(−KX − tE) dt =
1

(−KX)2

∫ 1

0

(−KX)2(1− t)2 dt =
1

3
.

11It suffices to consider smooth curves due to the plt hypothesis.
12See Corollary 1.109 in The Calabi Problem for Fano Threefolds, Araujo et al., 2023.
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Now note that

−KX−uE ∼ (1−u)(−KX) is nef ⇐⇒ (1−u)(−KX) is pseudo-effective ⇐⇒ 0 ≤ u ≤ 1.

In this case P (u) = (1 − u)(−KX) and N(u) = 0, and so P (u)|E = 3(1 −
u)p, ordp(P (u)|E) = 3(1− u). Then,

S(WE
•,•; p) =

2

vol(L)

∫ τ

0

∫ t(u)

0

max{ordp(P (u)|E)− v, 0} dv du

=
2

3

∫ 1

0

∫ 3(1−u)

0

(3(1− u)− v) dv du = 1.

We calculate that δp(E,DE,W
E
•,•) = 1, and then

δp(X;V•) ≥ min

AX(E)

SX(E)
, δp(E, ∆E︸︷︷︸

=0

;WE
•,•)

 = min{3, 1} = 1.

The previous calculation concludes that X is K-semistable.

Remark III.6.10. In fact, Abban-Zhuang verify that δ(X) ≥ 3/2, and every cubic

surface is K-stable.

To finish this chapter, we present another example of application of the Abban-Zhuang

estimate, in this case for a log pair.

Example III.6.11. Consider the singular variety X = P(1, 1, 2). Bear in mind that

this variety is constructed as follows: take the graduated ring S = k[x, y, z] with

the graduation deg(x) = deg(y) = 1, deg(z) = 2, and define X
def
= Proj(S). The

shifted module S(2) gives a line bundle OX(2)
def
= S̃(2), whose global sections are

Γ(X,OX(2)) = S(2)0 = ⟨x2, y2, xy, z⟩ so we have an embedding φ : X ↪→ P3
[x,y,z,w]

which gives P(1, 1, 2) ∼= V (xy − z2).
In this example we will consider (X,∆) = (P(1, 1, 2), λQ) where λ ∈ Q>0 and

Q = X ∩ {w = 0} is the hyperplane section at infinity. Precisely, we will show the

following facts:

1. (X,λQ) is K-unstable for any λ ̸= 1/2.

2. (X,∆) = (X, 1
2
Q) is K-semistable.

First, consider Y = {x = z = 0} ⊂ X as a ruling through the vertex, as the following

image shows.
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X = P(1, 1, 2)

Y

Q

Note first that Q = 2Y , and in fact it can be proved that KX = −4Y . In first place,

we will calculate δ(X,∆)(Y ). By definition we note that the log discrepancy in this case

corresponds to A(X,λQ)(Q) = 1 − λ. Moreover, we note that (−KX − ∆) ∼ (2 − λ)Q

and this shows that

−KX −∆ is nef ⇐⇒ −KX −∆ is pseudoeffective ⇐⇒ 2− λ ≥ 0.

Using the previous facts we can compute

S(X,∆)(Q) =
1

vol(−KX −∆)

∫ 2−λ

0

vol(−KX −∆− tQ)dt

=
1

(2− λ)2Q2

∫ 2−λ

0

(2− λ− t)2Q2dt

=
1

3
(2− λ),

and then δ(X,∆)(Q) = 3(1−λ)
2−λ

. In particular, when we take λ = 0 we obtain δ(X,∆)(Q) = 2
3
,

which shows that X is K-unstable by the valuative criterion. Moreover, note that

δ(X,∆)(Q) =
3(1− λ)

2− λ
≥ 1 ⇐⇒ λ ≤ 1

2
∨ λ > 2.

To obtain the conclusion 1. we will do the blow-up of the vertex p ∈ X and we will cal-

culate the δ-invariant for the exceptional divisor. The vertex p ∈ X is a rational double

point (also known as a A1 singularity), an its resolution of singularities correspondes

exactly to the blow-up at the vertex

F2 := P(OP1 ⊕ OP1(2))
ε−→ X,

where F2 is the Hirzebruch surface and we denote by E the exceptional divisor of this

resolution. It is known that this is a crepant resolution, i.e., ε∗KX = KF2 , and we can

calculate

ωF2 = ε∗(ωP1 ⊗ OP1(−2))⊗ OF2(−2) = OF2(−2).
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In terms of divisors, we obtain that KF2 = −2ξ where ξ is the class of a section of the

projection F2 → P1. We will calculate δ(X,λQ)(E). For this, we review the intersection

theory of F2. We know that Pic(F2) = Z[f ] ⊕ Z[ξ] (see [Bea83, Proposition III.18])

where f is the class of a fiber of the projection F2 → P1. The rules for intersection are

ξ2 = 2, f 2 = 0, f · ξ = 1,

and we can prove that the exceptional divisor E of ε : F2 → X corresponds to E =

ξ − 2f . We can write ε∗Q = af + bξ and as Q doesn’t contain the vertex we have

0 = Q · ε∗E = ε∗Q · E = (af + bξ) · (ξ − 2f) = a

and similarly

2 = Q2 = (ε∗Q)2 = b2ξ2 = 2b2 ⇒ b = 1

so we obtain

ε∗(−KX − λQ)− tE = (2− λ− t)ξ + 2tf.

As we know that Pseff(F2) = Nef(F2) = R+[ξ]⊕R+[f ], we note the threshold is τ = 2−λ
and then it follows

S(X,λQ)(E) =
1

vol(−KX − λQ)

∫ 2−λ

0

vol(ε∗(−KX − λQ)− tE)dt

=
2

2(2− λ)2

∫ 2−λ

0

((2− λ)2 − t2)dt

=
2

3
(2− λ)

Clearly, in this case A(X,λQ)(E) = 1, and then δ(X,λQ)(E) = 3
2(2−λ)

. Now we can observe

δ(X,∆)(E) =
3

2(2− λ)
≥ 1 ⇐⇒ 1

2
≤ λ < 2.

These calculations shows that the pair (X,λQ) is K-unstable when λ ̸= 1
2
.

In the following we fix the notation (X,∆) = (X, 1
2
Q), and to prove this pair is

K-semistable using the Abban-Zhuang estimate, we will have to bound the number

δp(X,∆) for any point p ∈ X. First, we take p ∈ X as any smooth point. To use the

adjunction we have to choose the divisor E, which we choose as a ruling Y through the

point p. Same calculations that we already did shows that δ(X,∆, Y ) = 1. Now, note

that
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−KX∆− uY ∼ (3− u)Y is nef ⇐⇒ it is pseudo-effective ⇐⇒ 0 < u < 3.

By this observation, the Zariski decomposition is P (u) = −KX − ∆ − uY,N(u) = 0.

Moreover, we note that

P (u)|Y = (3− u)Y |Y =
3− u

2
(2Y )|Y =

3− u
2

p

and then ordp(P (u)|Y ) = 3−u
2

.

S(W Y
•,•, p) =

4

9

∫ τ

0

∫ t(u)

0

max{ordp(P (u)|Y )− v, 0}dvdu

=
4

9

∫ 3

0

∫ 3−u
2

0

(
3− u

2
− v
)
dvdu =

1

2
.

Finally, as Y ∼= P1, the different divisor is

KY + ∆Y = (KX + Y )|Y = −3Y |Y = −3

2
p ⇒ ∆Y = −3

2
p+ 2p =

p

2
,

so A(Y,∆Y )(p) = 1
2

and we conclude δp(Y,∆;WY
•,•) ≥ 1. This gives the bound δp(X,∆) ≥

1 for any smooth point p ∈ X.

To conclude we will do the calculation for the singular point p ∈ X. For this we will

do the Abban-Zhuang estimation with E as the exceptional divisor of the resolution

ε : F2 → X. As we already calculated ε∗(KX − 1
2
Q) − tE = (3

2
− t)ξ + 2tf and

δ(X,∆;E) = 1, it only remains to calculate δp(E,∆E;WE
•,•). We see that

ε∗(KX − 1
2
Q)− tE is nef ⇐⇒ it is pseudo-effective ⇐⇒ t ≤ 3/2.

and then we have the Zariski decomposition P (u) = (3
2
− t)ξ + 2tf,N(u) = 0. By

adjunction, and the fact that E ∼= P1, we have

KE = (KF2 + ξ)|E ⇒ ξ|E = 2q

KE = (KF2 + f)|E ⇒ f |E = 2q

where q ∈ E is any point. Also we have E|E = (ξ − 2f)|E = −2q and then

P (u)|E = (3 + 2u)q ⇒ ordp(P (u)|E) = (3 + 2u)

We also need to calculate

vol(ε∗(−KX −∆)) = vol

(
−KF2 −

1

2
ε∗Q

)
= vol

(
3

2
ξ

)
=

9

2
.
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We can finally calculate

S(WE
•,•, q) =

2

vol(ε∗(−KX −∆))

∫ 3/2

0

∫ 3+2u

0

(3 + 2u− v)2dvdu =
1

3

and

−2p+ ∆E = (KF2 + Q̃+ E)|E ⇒ ∆E = −3q.

A(E,∆E)(q) = 1− (−3) = 4.

This shows that

inf
q∈E

δq(E,∆E;WE
•,•) =

4

1/3
= 12

and then we have proven that δp(X,∆) ≥ 1 for every point p ∈ X. We conclude (X, 1
2
Q)

is K-semistable.
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Chapter IV

K-stability of Fano fourfolds

In this final chapter we will present a brief review about K-stability of del Pezzo four-

folds, and then the idea will be to study a family of Fano fourfolds and to present some

evidence towards its K-stability.

More precisely, this chapter represents a work in progress on the K-stability of Fano

fourfolds of genus 9, part of which was developed during a research stay at the University

of Poitiers in October 2024. The author is deeply grateful to Adrien Dubouloz for

the opportunity to present partial results at the workshop “K-stability, Geometry and

Group Actions” and warmly thanks Takashi Kishimoto and Kento Fujita for their

valuable comments during the stay.

IV.1 Review of K-stability of del Pezzo manifolds

As we already said, in [ACC+23] all K-stable Fano threefolds were classified, so the next

question is about K-stability of Fano fourfolds. In this sense, we have the following

theorem which is a result of several works of different people.

Theorem IV.1.1 ([ST24, AGP06, Fuj17, ACC+23]). K-stable del Pezzo manifolds of

d ̸= 3 are completely classified in terms of its degree. Specifically, if X is a del Pezzo

manifold:

1. If d = 1, 2, X is K-stable.

2. If d = 4, X is K-polystable.
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3. If d = 5, in terms of the dimension we have:

• If dim(X) = 3, X is K-polystable.

• If dim(X) = 4, 5, X is not K-semistable.

• If dim(X) = 6, X is K-polystable.

4. If d = 6, X is K-polystable.

5. If d = 7, X is not K-polystable.

6. If d = 8, X is K-stable.

In the case of degree d = 3 we only have the answer up to dimension 4.

Theorem IV.1.2 ([Liu22, Corollary 1.2]). All smooth cubic fourfolds are K-stable.

The conclusion of this section is then that we have a complete understanding of K-

stability of del Pezzo fourfolds.

IV.2 Birational geometry of Fano-Mukai manifolds

of genus 9

We already studied del Pezzo varieties and we developed in depth some examples of

such varieties in dimension 4. Now we jump one step forward again in the index.

Definition IV.2.1 (Fano-Mukai variety). A Fano-Mukai variety is a Fano variety X

with index ι(X) = dim(X)− 2.

The name of these varieties was given in honor of S. Mukai, which completely classified

prime (i.e., with Picard rank 1) Fano varieties of that index in arbitrary dimension

(announced in [Muk89]). In this sense, we have the first important observation.

Lemma IV.2.2. Let X be a Fano-Mukai variety of dimension dim(X) = n and ρ(X) =

1. Then X has genus g ≤ 12 and g ̸= 11 and it verifies the relation d = 2g − 2 where

d is the degree of V . Moreover, if g = 12 then dim(X) = 3.
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IV.2.1 Construction of Fano-Mukai manifolds of genus 9

Because we will be interested uniquely in the case of genus 9, we only give a description

of these case. Here below we give an explicit construction that we will comment in the

next sections. The complete description of prime Fano-Mukai varieties can be found in

[AC13, Theorem 2.3].

Here below we discuss the definition of the Lagrangian Grassmannian, drawing primar-

ily on [IR05].

Construction IV.2.3. Let V = C6 be a 6-dimensional complex vector space, and

let ω : V × V → C be a symplectic form on V , i.e., a skew-symmetric, bilinear and

non-degenerate map. Fixing a basis {e1, . . . , e6} of V we can assume that ω is given by

the matrix

J = (ω(ei, ej))i,j =

(
0 −I3
I3 0

)
,

where I3 denotes the 3 × 3 identity matrix. A subspace U ⊂ V is called isotropic

if ω|U×U = 0, and it can be proven that the maximal dimension of such subspace is

3. A maximal isotropic subspace is called a Lagrangian subspace, and the set of all

Lagrangian subspaces in V = C6 is denoted LG(3, V ) ⊂ Gr(3, V ). The symplectic

form ω permits to define a contraction map

ω̃ :
3∧
V → V, v1 ∧ v2 ∧ v3 7→ ω(v1 ∧ v2)v3 + ω(v2 ∧ v3)v1 + ω(v3 ∧ v1)v2

which is surjective and
∧⟨3⟩ V

def
= ker(ω̃) is of dimension dim(

∧⟨3⟩ V ) = 14. If φ :

Gr(3, V ) ↪→ P19 is the Plücker embedding, it can be showed that φ(LG(3, V )) =

P(
∧⟨3⟩ V ) ∩ φ(Gr(3, V )) ⊂ P(

∧⟨3⟩ V ) ∼= P13, so it is a projective variety, and moreover,

the symplectic group

Sp6(C) = {Z ∈ SL(6,C) : tZJZ = J}

acts transitively in LG(3, V ). Hence, the Lagrangian Grassmannian is a homogeneous

space.

The reason to discuss the previous construction is the following characterization of

prime Fano-Mukai n-folds of genus 9.

Proposition IV.2.4. Let V be an n-dimensional Fano-Mukai variety with ρ(V ) = 1

and g(V ) = 9. Then V is a linear section of the Lagrangian Grassmanian LG(3, 6) ⊂
P13 under the Plücker embedding.
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A final comment about the Lagrangian Grassmannian is the non-existence of planes.

Lemma IV.2.5. The Lagrangian Grassmanian Σ := LG(3, 6) does not contain planes.

Proof. By Remark II.3.13 there is a universal exact sequence of vector bundles in G =

G(3, 6), which we can restrict to Σ and obtain

0→ S → VΣ → Q → 0

where VΣ is the trivial bundle on Σ, and S is the universal subbundle, i.e., the fiber

of S at a point U ∈ Σ is the subspace U itself. Moreover, note that the linear map

L : V → V ∗, v 7→ ω(v, ·) induces an isomorphism U∗ ∼= V ∗/U⊥ ∼= V/U for an isotropic

subspace U ⊂ V . This implies that Q ∼= S ∨.

Suppose there is a plane Π ∼= P2 ↪→ Σ, i.e., Π is linearly embedded into Σ, meaning

that c1(S |Π) = −ℓ where ℓ is the class of a line in P2. Then, the total Chern class of

S |Π is

c(S |Π) = 1− ℓ+ xℓ2

for some x ∈ Z. By duality

c(S ∨|Π) = 1 + ℓ+ xℓ2,

and then we compute

1 = c(VΣ|Π) = c(S |Π) · c(S ∨|Π) = 1 + (2x− 1)ℓ2.

The fact that 2x = 1 gives a contradiction.

IV.2.2 Sarkisov link between W5 and V16 after Prokhorov and

Zaidenberg

In this section we follow the articles by Prokhorov and Zaideberg [PZ17, PZ18]. Using

the quintic del Pezzo fourfold W = W5, we will be able to construct a Fano-Mukai

fourfold V = V16 ⊂ P11, i.e., such that −KV = 2H where Pic(V ) = Z[H]. In the case

of V we will have deg(V ) = 16 and g = g(V ) = 9.

Proposition IV.2.6 ([PZ17, Proposition 4.1]). The quintic fourfold W ⊂ P7 has an

hyperplane section containing an anticanonically embedded sextic del Pezzo surface F6 ⊂
P6 such that none of the planes contained in W intersects F6 in a conic.
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Proof. Let X = X6 ⊂ P7 be a smooth del Pezzo 3-fold of degree 6. By Fujita’s

classification there exists a unique X and ρ(X) = 2, and by Prokhorov there exists a

commutative diagram

X̃ = Blp(X)

xx ''

p ∈ X πp
// U ⊂ P6

where πp is the projection from a general point p ∈ X and U = U5 ⊂ P6 is a quintic

del Pezzo 3-fold with 2 node singularities. Explicitly, X can be realized as a smooth

member of the linear system |OP2×P2(1, 1)| in P2 × P2, so we have natural projections

priX → P2 which are P1-bundles. We have the following geometric picture.

Z

p

Ep

ℓ1

ℓ2

ℓ̃1

ℓ̃2

X

U

F

X̃

πp

Take D ∈ |OP2×P2(1, 1)| another smooth general divisor and let Z := X ∩ D. By

adjunction we have

KZ = (KP2×P2+X+D)|Z = OZ(−3, 3)⊗NZ/X⊗NX/D = OZ(−3+2,−3+2) = OZ(−1,−1)

and then

(−KZ)2 = OZ(1, 1) · OZ(1, 1) = OP2×P2(1, 1)4

= (pr∗1 OP1(1) + pr∗2 OP1(1))4

= 6 pr∗1 OP1(1) · pr∗2 OP1(1)

= 6

i.e., Z is a smooth del Pezzo surface of degree 6.
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On the other hand, we know that U5 can be constructed as a linear section of codi-

mension 3 of G(2, 5) ⊂ P9. Then there exists a general hyperplane H ⊂ P9 and T1, T2

general tangent hyperplanes to G(2, 5). If we consider T as a general linear combi-

nation of T1 and T2, then W := G(2, 5) ∩ H ∩ T is a quntic del Pezzo fourfold which

contains U , so it contains the image of Z ⊂ X under πp.

The key for the construction is to use a surface like in the previous proposition, blow-up,

and then obtain a new variety as a result of performing the 2-ray game. Here we only

ennounce the main result. For the complete proof consult [PZ17, §5.1].

Theorem IV.2.7 ([PZ17, Theorem 2.1]). Let W = W5 ⊂ P7 be a del Pezzo fourfold of

degree 5, and let F ⊂ W ∩ P6 be an anticanonically embedded sextic del Pezzo surface

such that c2(W ) · F = 26 and such that F does not intersect any plane in W along a

conic. Then there exists a commutative diagram

D

��

⊂ W̃
ρ

~~

φ

��

⊃ E

��

F ⊂ W
φ

// V ⊃ S

where

• V = V16 ⊂ P11 is a Mukai fourfold of genus g = 9.

• the map φ : W 99K V ⊂ P11 is given by the linear system of conics through F

• ρ : W̃ → W is the blow-up of F with exceptional divisor D, and φ : W̃ → V is

the blow-up of a smooth quadric surface S ⊂ P3 ⊂ P11 with exceptional divisor E

and such that c2(V ) · S = 5.

• if H is an ample generator of Pic(W ) and L is an ample generator of Pic(V ),

then

ρ∗H ≡ φ∗L− E, D ≡ φ∗L− 2E,

φ∗L ≡ 2ρ∗H −D, E ≡ ρ∗H −D.

IV.3 K-stablity of V16

In this section we will present a calculation concerning K-stability of V16 based on the

tools developed in [Fuj16]. In that article, K. Fujita introduces the notion of divisorial
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stability, which consists in the following idea. For a Q-Fano variety X and a nonzero

effective Weil divisor D ∈ WDiv(X) he constructs a test configuration of (X,−rKX),

called the basic semi-test configuration via D, and he gave an explicit formula for the

Donaldson-Futaki invariant of those configurations. Later, in [Fuj17] he would use

these tools to prove that quintic del Pezzo fourfolds W5 are K-unstable, and the proof

consists of calculating the Donaldson–Futaki invariant associated with the semi-basic

test configuration via the exceptional divisor of the Sarkisov link studied in §II.3.6.

First, we will introduce some tools from the first reference, and afterwards we will do

the same calculation K. Fujita made for W5, but for V16 and using the exceptional

divisor of its corresponding Sarkisov link.

We start introducing some terminology from [KKL16], which is concerning to geography

of models.

Definition IV.3.1. Let X be a normal projective variety and let DX be an R-Cartier

divisor on X. Let φ : X 99K Y be a birational map to a normal projective variety such

that DY := φ∗DY is R-Cartier, we say that:

1. φ is DX-nonpositive if for a common resolution (p, q) : W → X × Y we can

write p∗DX = q∗DY + E, with E effective and q-exceptional.

2. φ is a semiample model of DX if φ is DX-nonpositive and DY is semiample.

3. φ is the ample model of DX if exists f : X 99K Z a semiample model of DX

and a morphism with connected fibers g : Z → Y such that φ = g ◦ f and such

that f∗DX = g∗AY with AY an ample R-divisor.

Assume now that X is a smooth Fano manifold of dimension n and that S ⊆ X is

a smooth subvariety of codimX(S) = d and with associated ideal sheaf IS ⊆ OX .

We denote by ρ : X̃ → X the blow-up of X along S, with exceptional divisor ES
∼=

P(N ∨
S/W ). We will assume that ES is a dreamy divisor 1. We recall that the pseudo-

effective threshold of S with respect to (X,−KX) is defined as

τ(S) := max{τ ∈ R≥0, ρ∗(−KX)− τES is pseudo-effective}.

Under the previous assumptions, the following is a particular case of [KKL16, Theorem

4.2].

1This occurs, thanks to [BCHM10], when X̃ is a Fano variety.
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Theorem IV.3.2. There is a unique sequence {(τi, Xi)}1≤i≤m with

• 0 =: τ0 < τ1 < · · · < τm = τ(S) are positive rational numbers,

• X1, . . . , Xm are normal projective varieties with X1 = X̃, and

• there are mutually distinct birational contractions φi : X̃ 99K Xi for i ∈
{1, . . . ,m} with φ1 = IdX̃ ,

and such that

1. For any x ∈ [τi−1, τi], φi is a semiample model of ρ∗(−KX)− xES.

2. If x ∈]τi−1, τi[, φi is the ample model of ρ∗(−KX)− xES.

We say that {(τi, Xi)}1≤i≤m is the ample model sequence of (X,−KX ; IS), and we

set Ei := (φi)∗ES.

Construction IV.3.3 (K. Fujita). Let r ∈ N≥1 be a fixed and sufficiently di-

visible positive integer such that r · τ(S) ∈ N≥1 and such that the graded C-

algebra
⊕

k≥0, 0≤j≤rτ(S) H0(X,OX(−krKX) · I j
S ) is generated as a C-algebra by⊕

0≤j≤rτ(S) H0(X,OX(−rKX) ·I j
S ). In particular, the divisor −rKX is very ample.

We define the coherent ideal sheaf I ⊆ OX×A1 associated to (X,−KX ; IS) to be

I := Jr·τ(S) + Jr·τ(S)−1 · ⟨t⟩+ · · ·+ J1 · ⟨tr·τ(S)−1⟩+ ⟨tr·τ(S)⟩ ⊆ OX×A1 ,

where Jj ⊆ OX is the image of H0(X,OX(−rKX) ·I j
S )⊗ OX(rKX)→ OX .

We denote by σ : X → X × A1 the blow-up of X × A1 along I ⊆ OX×A1 and,

if EX ⊆ X is the Cartier divisor defined by OX (−EX ) = I · OX , we set L :=

σ∗ pr∗1(−rKX)⊗ OX (−EX ).

The following result by K. Fujita in [Fuj16] can be seen as a more precise version of the

valuative criterion of K-stability in this particular situation.

Theorem IV.3.4 ([Fuj16, Theorem 5.1]). With the above notation and assumptions,

(X ,L )→ A1 is a test configuration of (X,−rKX), called the basic test configura-

tion of (X,−rKX) via S, and we have

DF(X ,L ) =
r2n(−KX)n

2 · (n!)2
η(S)
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where η(S) = n

m∑
i=1

∫ τi

τi−1

(d− x)((−KXi
+ (d− 1− x)Ei)

n−1 · Ei) dx.

Moreover, η(S) = (−KX)n(AX(ES)− SX(ES))
def
= (−KX)nβX(ES).

A first thing that we will need to carry out the computation will be the Chern classes

of the conormal bundle of the smooth quadric S ⊂ V16 appearing in Theorem IV.2.7.

Lemma IV.3.5. Let V = V16 ⊂ P11 be a prime Fano-Mukai 4-fold of genus g = 9 and

let S ⊂ P3 ⊂ P11 be a smooth quadric such that S ⊂ V and c2(V ) · S = 5. Then

c1(N ∨
S/V ) = OS and c2(N ∨

S/V ) = 1.

Proof. We know that S ∼= P1 × P1 and ω∨
S
∼= OP1×P1(2, 2). By adjunction we have that

OV (−KV )|S ∼= OS(−KS)⊗ det(NS/V )

and OV (−KV ) ∼= (L∨)⊗2 where Pic(V ) = Z[L]. We can write

OV (L)|S ∼= OP1×P1(a, b) for some a, b ≥ 1 by ampleness,

and since S ↪→ P3 we deduce h0(OP1×P1(a, b)) = 4. and the Künneth formula implies

a = b = 1. It follows that c1(N ∨
S/V )

def
= det(N ∨

S/V ) ∼= OS.

Taking total Chern classes in the exact sequence

0 −→ TS −→ TV |S −→ NS/V −→ 0

we obtain that

c2(V ) · S = c2(S) + c1(S) · c1(NS/V )︸ ︷︷ ︸
=0

+c2(NS/V )

and we know c2(S) = χtop(P1 × P1) = χtop(P1)2 = 4.

Proposition IV.3.6. With the notation of IV.2.7, we have βV (E) = 7
20
.

Proof. The following picture
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φ∗ Nef(V )

ρ∗ Nef(W )

E

D

τ1 = 2

ρ∗(−KV )

τ2= 4

shows that the ample model sequence of (V,−KV ) corresponds to X1 = W̃ with τ1 = 2,

and X2 = W with τ2 = 4. According to Theorem IV.3.4 this implies that we have the

following formula for the β-invariant:

βV (E) =
4

(−KV )4

∫ 2

0

(2− t)(−KW̃ + (1− t)E)3 · E dt︸ ︷︷ ︸
=:I1

+

∫ 4

2

(2− t)(−KW + (1− t)ρ∗E)3 · E dt︸ ︷︷ ︸
=:I2


We already know (−KV )4 = 16 deg(V ) = 256, and in the following we will calculate the

intersection number (−KW̃ + (1− t)E)3 · E. To do this we have a list of observations.

1. If π : E ∼= P(N ∨
S/V )→ S is the natural projection, we have that

OE(KE) = − rk(N ∨
S/V )OE(1) + π∗(OS(KS)⊗ det(N ∨

S/V ))

⇒ KE = −2ξE + π∗(KS).

and by adjunction

KE = KW̃ |E + E|E ⇒ (−KW̃ )|E = −ξE −KE.

Then

OW̃ (−KW̃ + (1− t)E)|E = OE(xξE − π∗(KS))
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2. By definition of Chern classes (see [Har77, §A.3]) it is verified that

ξ2E − π∗c1(N
∨

S/V ) · ξE + π∗c2(N
∨

S/V ) = 0

⇒ ξ2E = −π∗c2(N
∨

S/V ) = −f

where f corresponds to the class of a fiber of π (here we use the previous lemma

which says c2(N ∨
S/V ) = 1), and then ξ3E = −ξE · f = −1.

3. By projection formula

ξ2E · π∗(KS) = −π∗({pt}) · π∗(KS) = {pt} ·KS = 0.

4. Since S is a del Pezzo surface of degree 6

ξE · π∗(KS)2 = ξE · π∗(K2
S) = 8ξE · f = 8

Using the previous calculations we can compute

I1 =

∫ 2

0

(2− x)(−KW̃ + (1− x)E)3 · E dx

=

∫ 2

0

(2− x)(xξE − π∗KS)3dx

=

∫ 2

0

(2− x)(x3ξ3E − 3x2ξ2E · π∗(KS) + 3xξE · π∗(KS)2 −�����π∗(KS)3)dx

=

∫ 2

0

(2− x)(−x3 + 24x)dx =
152

5

Besides, since ρ(E) is a hyperplane section of W , we have ρ∗E = H and we reach

I2 =

∫ 4

2

(2− x)(−KW + (1− x)ρ∗E)3 · ρ∗E dx

=

∫ 4

2

(2− x)(4− x)3H4dx = −8

and finally we obtain

βV (E) =
4

256

(
152

5
− 8

)
=

7

20
> 0

Remark IV.3.7. The above calculation does not permit to decide about the K-

stability of V . Therefore, we will require more precise tools such as Abban-Zhuang

estimates, and moreover equivariant versions of such estimates.
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IV.4 Automorphisms group of V16 and invariant

subvarieties

In this section, we analyze the structure of the automorphism group of V16, following

closely the framework developed in [DM22]. This study leverages the explicit charac-

terization of these varieties as linear sections of the Lagrangian Grassmannian, a topic

we explored in detail earlier in this chapter.

Our interest on the automorphisms group is based in the following criterion.

Theorem IV.4.1 ([Zhu21, Theorem 1.1]). Let X be a klt Fano variety and G ⊂ Aut(X)

a reductive subgroup. Then X is

1. K-semistable if and only if β(F ) ≥ 0 for every G-invariant dreamy divisor F over

X.

2. K-polystable if β(F ) > 0 for every G-invariant dreamy divisor F over X.

In view of the previous theorem, a very useful approach to prove K-semistability is to

determine all the G-invariant subvarieties under a suitable subgroup of automorphisms,

and then to compute their associated invariants (see for example the approach used in

[CS23]). In the case of V16 we have to look for invariant subvarieties of dimension

0, 1, 2, 3. Neverthless, the following theorem eliminates the case of invariant divisors.

Theorem IV.4.2 ([Fuj16, Corollary 9.3]). Let X be a smooth Fano variety of ρ(X) = 1

such that X ̸≃ Pn. Then X is divisorially stable, i.e., β(E) > 0 for all divisor E on X.

In the following, we explicitly describe the automorphisms group of V16 and we prove

that its action has no fixed points. We finish with some comments about invariant

curves in V16.

For the remainder of this section, we adopt the notation established in §IV.2.1. Spe-

cially, we fix V14 = ∧⟨3⟩C6, G = Sp6(C), L ⊂ V14 as a general codimension 2 linear

subspace, and V = LG(3, 6) ∩ P(L) as a general Mukai fourfold of g(V ) = 9. he

following theorem, central to our analysis, establishes a precise relationship between

isomorphisms of these varieties and elements of the group G.

Theorem IV.4.3 ([DM22, Proposition 4]). Let V = LG(3, 6)∩P(L), V ′ = LG(3, 6)∩
P(L′) be two Fano-Mukai fourfolds of genus 9, and suppose φ : V → V ′ is an isomor-

phism. Then there exists g ∈ G such that g(L) = L′ and φ = g∗.
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This theorem reduces the problem to study automorphisms of V to a problem at the

level of linear algebra, because it is sufficient to look for symplectic matrices that

stabilizes the subspace L. Using this result as the starting point, it is possible to

find the automorphisms group of V . The strategy adopted in [DM22] consists of the

following main steps.

1. Note that if g ∈ G stabilizes L, and g = gsgn is its Jordan decomposition (i.e., gs

is semisimple and gnis unipotent) then gs, gn both preserves L. In conclusion, it

is enough to analyze these two types of elements separately.

2. Prove there is no unipotent elements preserving L.

3. A semisimple element has a positive dimensional family of stable subspaces if and

only if has eigenvalues of mutiplicity greater than 1. Dividing semisimple elements

in terms of degenerations of its eigenvalues, a dimension count permits to detect

elements that stabilized a general linear subspace of V16.

Using these ideas systematically the complete description of the automorphisms can be

given. We summarize this description in the following theorem.

Theorem IV.4.4 ([DM22]). For a general codimension 2 linear subspace L ⊂ V14 there

exists

(I) a unique triple (A1, A2, A3) of non-dgenerate, pairwise orthogonal planes in C6,

such that L⊥ ⊂ A1 ⊗ A2 ⊗ A3. Moreover, the involutions ± IdA1 ± IdA2 ± IdA3.

(II) twelve pairs (E,F ) of transverse Lagragian subspaces of C6 such that E and F

boh meets each Ai non trivially and L⊥ intersects non trivially ∧3E ⊕ (E ⊗∧2F )

and (∧2E⊗F )⊕∧3F . These pairs of subspaces defines twelve anti-involutions of

the form i(IdE − IdF ).

Type (I) involutions defines 3 different involutions in PSp6(C) stabilizing L, and type

(II) anti-involutions defines 9 different involutions in PSp6(C). Moreover, these con-

stitute all the automorphisms of V , and they are mutually commutative. In conclusion,

the group of automorphisms of V corresponds to

Aut(V ) ∼= (Z/2Z)4 ⊂ PSp6(C).
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Another interesting description that is given in [DM22] are the fixed loci of each type

of involution.

Theorem IV.4.5 ([DM22, Proposition 18]). The fixed locus in V of a type I involution

is a del Pezzo surface of degree 4. The fixed locus of type II involution is a disjoint union

of two Veronese surfaces.

We are particularly interested in studying the invariant subvarieties of V16 under the

action of its automorphism group, and in this direction, we may begin by writting down

all the automorphisms explicitly in coordinates.

More precisely, for a basis C6 = ⟨e1, e2, e3, e−3, e−2, e−1⟩, the six vectors

g±1 = e±1 ∧ (e2 ∧ e−2 − e3 ∧ e−3), g±2 = e±2 ∧ (e3 ∧ e−3 − e1 ∧ e−1)

g±3 = e±3 ∧ (e1 ∧ e−1 − e2 ∧ e−2)

joint with the eight vectors f±±± = e±1 ∧ e±2 ∧ e±3 forms a basis of V14.

Modulo change of coordinates, we can suppose L⊥ = ⟨f+++, f−−−⟩ in order to give the

explicit list of involutions. In this case the Type I involutions corresponds to

σ1 = IdA1 − IdA2 − IdA3 , σ2 = IdA2 − IdA3 − IdA1 , σ3 = IdA3 − IdA1 − IdA2 ,

where Ai = ⟨ei, e−i⟩, and it verifies the relation σ3 = σ2 ◦ σ1. Besides, we have three

fundamental type II involutions given by

s = i(IdE − IdF ), t = i(IdE′ − IdF ′), u = st = i(IdE′′ − IdF ′′)

for the following pairs of Lagragian subspaces

(E,F ) = (⟨e1, e2, e3⟩, ⟨e−3, e−2, e−1⟩)

(E ′, F ′) = (⟨e1 + ie−1, e2 + ie−2, e3 + ie−3⟩, ⟨e1 − ie−1, e2 − ie−2, e3 − ie−3⟩)

(E ′′, F ′′) = (⟨e1 + e−1, e2 + e−2, e3 + e−3⟩, ⟨e1 − e−1, e2 − e−2, e3 − e−3⟩)

The remaining 9 type II involutions arise from composing the involutions s, t, u with

the σi involutions. The action of each σi merely permuts the eigenvectors of s, t, u. In

particular, we have the identities

t(f±±±) = (−1)εf∓∓∓ and t(g±k) = ∓g∓k.

where ε corresponds to the number of positive signs in the subscript of f∓∓∓.

The previous description of automorphisms allows us to conclude the following.
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Proposition IV.4.6. There are no fixed points in V16 under the action of Aut(V16).

Proof. Note that a fixed point of V16 corresponds to an invariant line in the vector space∧⟨3⟩(V ), following the notation used in §IV.2.1.. The linear isomorphisms s, t are anti-

involutions of the space ∧⟨3⟩C6, so their uniques eigenvalues are ±i. The conclusion

follows verifying that the conditions s(v) = λv and t(v) = µv for λ, µ = ±i implies

v = 0.

Remark IV.4.7. The proof of the previous proposition shows that it is enough to

consider a subgroup G = (Z/2Z)2 ⊂ Aut(V ) in order to have an action without fixed

points.

Now, following the idea commented at the beginning of this section, the next step would

be to analyze G-invariant curves. So, a first approach would be to bound the degree of

destabilizing curves (e.g. [Fuj23b]).

An alternative approach would be trying to prove there is no destabilizing curves in V .

The idea is as follows. Suppose there is a G-invariant divisor E over V such that its

center C := cV (E) is a curve and βV (E) ≥ 0. Denote by η ∈ V the generic point of C.

By [Fuj23a, Proposition 2.9], we assume αG,η(V ) < 4
5
, where

αG,η(V ) = sup

λ ∈ Q

∣∣∣∣∣∣(V, λ∆) is lc at η for every effective

Q-divisor ∆ on V such that ∆ ∼Q (−KV )


This implies that there exists λ ∈ [4

5
, 5
6
) ∩ Q, an effective Q-divisor and a G-invariant

∆ ∼Q (−KV ) such that (V, λ∆) is lc but not klt at the point η ∈ V . By construction,

there exists an effective, irreducible, and G-invariant Z-divisor D0 such that

C ⊂ D0 ⊂ Nklt(V, αD),

where Nklt(V, αD) denotes the locus of points where the pair (V, αD) is not klt. More-

over, we have D0 ≤ αD, and since α < 5
6
, we observe that

D0 ≤ αD ≤ 5

6
D ∼ 5

3
H.

Since Pic(V ) = Z[H], it necessarily follows that D0 ∼ H. We then obtain the existence

of a G-invariant hyperplane section of V which contains C.
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This section is also a prime Fano variety of genus 9 and degree 16, and a general variety

of this type does not have non-trivial automorphisms (Dedieu-Manivel). However, since

the action of Aut(V ) has no fixed points, restricting the automorphisms we obtain at

least one non-trivial automorphism in the hyperplane section. Thus, it remains to

answer if there exists such threefolds with non-trivial automorphisms.
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Conclusion

In this work, we have studied many techniques from different authors and papers that

together build the foundation of K-stability theory as presented here. The main con-

cepts in this field were collected and explained with various examples to show their

meaning and applications.

After exploring and summarizing these techniques, the goal outlined in Chapter IV was

to prepare the groundwork for proving that a general Fano-Mukai fourfold of genus 9 is

K-stable. To this end, we applied methods similar to those in [Fuj17], where the idea of

Geography of Models was used to show that a general del Pezzo fourfold of degree 5 is

K-unstable. This was done by finding a divisor associated with a Sarkisov link, whose

beta invariant turned out to be negative.

In Chapter II, we studied del Pezzo fourfolds of degree 5 in detail, and in Chapter IV,

we observed a Sarkisov link connecting these varieties to Fano-Mukai fourfolds of genus

9. Using the approach in [Fuj17], we computed the beta invariant of the divisor linked

to V16 and W5. The result was positive, meaning this calculation alone does not prove

the K-stability of V16.

Because of this, we need more advanced strategies to reach a conclusion about V16.

To help with this, the final part of Chapter IV includes a summary of [DM22], which

describes the automorphism group of V16 and its fixed subvarieties. This is important

because, as noted in [ACC+23], it is often enough to check the numerical conditions for

divisors that are invariant under the automorphism group to prove K-stability.

For V16, this means we need to study whether there are fixed points, curves, surfaces,

or divisors under the automorphism group. Additionally, as it is mentioned in §IV.4,

[Fuj16, Corollary 9.3] shows that any smooth Q-Fano variety, different than the projec-

tive space, with Picard number ρ(X) = 1 is divisorially stable, so it is enough to focus

on points, curves, and surfaces.
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A useful tool for limiting the possibilities of curves in a Fano variety is [Fuj23b, Corollary

4.2], which gives a bound on the degree of a curve. The next step would be to use this

bound to identify invariant curves explicitly and perform detailed calculations. For

surfaces, a similar approach could be taken by generalizing this result to subvarieties

of higher dimension.

In summary, a list of the next steps for this work, as well as future projects, is presented

below.

• Complete the case of G-invariant curves by investigating the automorphisms of

hyperplane sections (family No. 1.8 of Fano threefolds).

• Describe G-invariant surfaces in V16.

Idea: describe two involutions in W5 such that the PZ link is equivariant.

• Alternative approach: determine an efficient subvariety to apply the Abban-

Zhuang adjunction method.

Idea: perform the blow-up of a line (in the work [Han10], the Hilbert scheme of

lines in V16 is characterized as a divisor of degree (1, 1, 1, 1) in P1×P1×P1×P1).

• Describe the moduli space of V16 varieties and identify special members. Deter-

mine the K-stability of these special varieties.
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series. Ann. Sci. Éc. Norm. Supér. (4), 42(5):783–835, 2009.

[LX14] Chi Li and Chenyang Xu. Special test configuration and K-stability of Fano

varieties. Ann. of Math. (2), 180(1):197–232, 2014.

[Mat02] Kenji Matsuki. Introduction to the Mori program. Universitext. Springer-

Verlag, New York, 2002.
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