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Abstract

Let X be a smooth projective variety over a number field K. We say rational points on X
are potentially dense if X(K ′) is Zariski dense for some finite field extension K ′ of K. The
study of potential density is an important problem in arithmetic geometry. Common strategies
found throughout the literature include studying algebraic varieties with large automorphism
groups, elliptic or abelian fibrations, or certain conic bundles [HT01]. In this work we provide
a brief introduction to the theory of elliptic and K3 surfaces, and describe in detail techniques
originally by Bogomolov and Tschinkel [BT00] used to propagate rational points on K3 surfaces
that admit elliptic fibrations.

Resumen

Sea X una variedad proyectiva suave definida sobre un cuerpo de números K. Decimos que
los puntos racionales en X son potencialmente densos si X(K ′) es Zariski denso para cierta
extensión de cuerpos finita K ′ de K. El estudio de la densidad potencial es un problema impor-
tante en geometŕıa aritmética. Algunas estrategias comunes en la literatura son estudiar var-
iedades algebraicas con grupos de automorfismos grandes, con fibraciones eĺıpticas o abelianas,
o con ciertos fibrados cónicos [HT01]. En este trabajo proveemos una breve introducción a
la teoŕıa de las superficies eĺıpticas y K3, y describimos en detalle técnicas originalmente de
Bogomolov y Tschinkel [BT00] usadas para propagar puntos racionales en superficies K3 que
admiten fibraciones eĺıpticas.

Mathematics subject classification: 14J28 K3 surfaces and Enriques surfaces (primary),
14G05 Rational points (secondary).

Keywords: (Density, potential density of) rational points, elliptic surfaces, K3 surfaces.
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Introduction

An elliptic surface is a smooth projective surface S that admits a fibration such that the general
fiber is a smooth projective curve of genus one. There is a natural way to associate a Jacobian
elliptic surface J(S) to S, and then the general fiber is an elliptic curve [Huy16]. Elliptic surfaces
form a very important class of algebraic surfaces which possess a rich geometric and arithmetic
structure. For example, their Mordell-Weil group may be studied from a lattice-theoretic point
of view, and so they lend themselves to a very natural definition of height [SS10]. A subclass of
special relevance is that of elliptic K3 surfaces, whose key distinctive properties are that they
are not abelian and that the same surface may admit more than one distinct Jacobian elliptic
fibration [SS10].

A K3 surface (the name was given in honour of Kähler, Kummer, and Kodaira) is a smooth
projective surface S whose canonical bundle ωS is trivial and h1(S,OS) = 0. Complex K3 sur-
faces are kähler, simply connected, and all of them diffeomorphic and deformation equivalent
to a quartic in P3 [Huy16]. Their second integral cohomology group has the structure of an
even unimodular lattice. Furthermore, they admit very rich Hodge and moduli theories (cf.
local and global Torelli theorems).

There are not many results in the current literature concerning rational points on K3 sur-
faces [Hua21], although results by Bogomolov, Hassett and Tschinkel from the beginning of
the present century ascertain potential density in the case of elliptic K3 surfaces [BT00, HT01].
More generally, these authors describe techniques which may be used to propagate rational
points on a large class of algebraic varieties. Other recent results include necessary and suffi-
cient conditions for the density of rational points on the family of surfaces of Cassels-Schinzel
type, whose elements arise as twisted Kummer surfaces associated to the product of two twisted
elliptic curves [Hua21].

This work has two main objectives.

• The first is to provide a brief and systematic introduction to the theory of elliptic and K3
surfaces. The aim is to be as self-contained as reasonably possible, with an orientation
toward the second objective, and somewhat light on proofs so as to not distract the reader.
The only prerrequisite is a first graduate course in algebraic geometry, e. g. to the level
of [Har77], Chapters I to III, although we will mostly deal with algebraic varieties, which
we will define as separated geometrically integral schemes of finite type over a field. This
is the content of Chapters II and III.
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– A secondary objective is to provide basic preliminaries on lattices, surfaces, and
Hodge theory. This is the content of Chapter I.

– Another secondary objective is to provide a brief introduction to rational and integral
points, along with a short survey of the current state of the art. This is the content
of Chapter IV.

• The second is to expand on the ideas originally in the article Density of Rational Points
on Elliptic K3 Surfaces, by Bogomolov and Tschinkel, here [BT00], wherein they prove
that if a K3 surface admits an elliptic fibration or has an infinite group of automorphisms,
then it has potentially dense rational points, here Theorem 4.1.23. This allows them to
characterise potential density of rational points on K3 surfaces in terms of their Picard
number and the existence of a −2-curve (i. e., a curve of self-intersection equal to −2).
We will closely follow their arguments and use the language we will have acquired in the
previous chapters to give more complete explanations. This is the content of Chapter VI.



Chapter 1

Preliminaries

In this chapter we provide basic preliminaries on lattices (Section 1.1), surfaces (1.2), and
Hodge theory (1.3).

In Section 1.1, we follow Debarre’s notes Hyperkähler Manifolds [Deb22], Kondō’s book K3
Surfaces [Kon20], and Shimada’s talk K3 Surfaces and Lattice Theory [Shi14]. We try to men-
tion synonyms found throughout the literature, and to quickly state the equivalence between
bilinear and quadratic forms.

In Section 1.2, we mostly follow the first pages of Chapter V of Hartshorne’s classic book
Algebraic Geometry [Har77]. We elaborate on a remark on Bogomolov and Tschinkel’s article
Density of Rational Points on Elliptic K3 Surfaces [BT00].

In Section 1.3, we mostly follow Huybrechts’s book Lectures on K3 Surfaces [Huy16] and
Makarova’s article General Introduction to K3 Surfaces [Mak16]. We give a short proof of the
famous Lefschetz (1, 1) theorem found in Griffiths and Harris’s book Principles of Algebraic
Geometry [GH94], and state the Hodge-theoretic version of the Torelli theorem for curves.
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1.1 Lattices

Definition 1.1.1

A lattice is a pair (L, ⟨·, ·⟩), where L ∼= Zr is a free abelian group of finite rank r, and
⟨·, ·⟩ : L× L→ Z is an integral-valued form such that:

1. For all x, y ∈ L, ⟨x, y⟩ = ⟨y, x⟩. (Symmetry.)

2. For all x, y, z ∈ L,m, n ∈ Z, ⟨mx+ ny, z⟩ = m⟨x, z⟩+ n⟨y, z⟩. (Z-bilinearity.)

3. For all x ∈ L, ⟨x, y⟩ = 0 for all y ∈ L implies x = 0. (Non-degeneracy.)

Equivalently, a lattice is a pair (L, q), where q : L → Z is an non-degenerate integral-
valued quadratic form (i. e., q(nx) = n2q(x) for all x ∈ L, n ∈ Z, the map L × L →
Z, (x, y) 7→ q(x+ y)− q(x)− q(y) is Z-bilinear, and the discriminant of q, which we will
not presently define, is non-zero).

Definition 1.1.2

Let (L, ⟨·, ·⟩L), (L′, ⟨·, ·⟩L′) be lattices such that L′ ⊂ L. We say L′ is a sublattice of L if
both bilinear forms are compatible (i. e., if ⟨·, ·⟩L′ = ⟨·, ·⟩L|(L′×L′)). In this situation, we
also say L is a superlattice of L′.

Definition 1.1.3

Let (L, ⟨·, ·⟩L), (L′, ⟨·, ·⟩L′) be lattices. Then:

1. A lattice homomorphism or embedding is a group homomorphism φ : L→ L′

such that for all x, y ∈ L, ⟨x, y⟩L = ⟨φ(x), φ(y)⟩L′ . In this situation, φ(L′) is a
sublattice of L. An embedding φ is primitive if the quotient group L/φ(L′) is
torsion-free.

2. An isomorphism or isometry is a homomorphism that is also a group isomor-
phism. An automorphism is an isomorphism from a lattice to itself.

3. The orthogonal group O(L) is the group of automorphisms of L.
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Remark 1.1.4

If a lattice is given by its bilinear form, we may obtain its quadratic form by defining

q(x) := ⟨x, x⟩.

Inversely, if a lattice is given by its quadratic form, we may recover its bilinear form via

⟨x, y⟩ := 1

2
(q(x+ y)− q(x)− q(y)), (cf. “ (x+ y)2 = x2 + 2xy + y2. ”).

Notation 1.1.5

We may write L instead of (L, ⟨·, ·⟩) or (L, q) and use both definitions as necessary.

Remark 1.1.6

We may define orthogonal direct sums of lattices as usual. If L′ ⊂ L is a sublattice, the
orthogonal complement of L′

L′⊥ := {x ∈ L | ∀y ∈ L′, ⟨x, y⟩ = 0}

does not generally give an orthogonal direct sum decomposition of L. In any case,
L′ ⊕ L′⊥ ⊂ L is a sublattice of finite index.

Definition 1.1.7

Let L be a lattice, and let {ei}1≤i≤r be a basis of L as a free abelian group. Then:

1. The Gram matrix of L is the symmetric matrix

A := (aij)1≤i,j≤r := (⟨ei, ej⟩)1≤i,j≤r.

The determinant
d(L) := det(A)

is well-defined (i. e., it is independent of the choice of basis of L).

2. L is even if all diagonal entries of A are even. Equivalently, if for all x ∈ L, ⟨x, x⟩
is even. L is odd if it is not even.

3. L is a negative-definite root lattice if all diagonal entries of A are equal to −2.

Remark 1.1.8

Root lattices are of particular importance in algebraic geometry; they arise naturally in
the context of elliptic and K3 surfaces. They are also in correspondence with a class of
graphs called Dynkin diagrams (cf. [Kon20], [SS10]).
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Definition 1.1.9

Let L be a lattice, let {ei}1≤i≤r be a basis of L as a free abelian group, and let x =∑r
i=1 xiei ∈ L, xi ∈ Z. Write q(x) = xAxt. By Sylvester’s law of inertia, we may

diagonalise A and obtain p positive and q negative (integer) eigenvalues in the diagonal.
Then:

1. The signature of L is the pair (p, q). The index of L is the integer p− q.

2. L is positive definite (resp., negative definite) if (p, q) = (r, 0) (resp., (p, q) =
(0, r)).

3. L is definite if it is positive or negative definite, and indefinite if it is not.

4. L is hyperbolic if (p, q) = (1, r − 1).

Definition 1.1.10

Let L be a lattice. The dual lattice is the lattice

L∨ := HomZ(L,Z) = {x ∈ L⊗Q | ∀y ∈ L, ⟨x, y⟩ ∈ Z} ⊂ L⊗Q,

where we extend ⟨·, ·⟩ to L⊗Q bilinearly.

Proposition 1.1.11

There is a natural inclusion i : L ↪−→ L∨, x 7→ ⟨x, ·⟩.

Proof. The map is injective as a consequence of the non-degeneracy.
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Definition 1.1.12

Let L be a lattice. Then:

1. The discriminant group is the quotient group

D(L) := L∨/L,

where L ⊂ L∨ is the natural injection.

2. If L is even, the discriminant quadratic form is the induced map

q̂ : D(L) → Q/2Z, x+ L 7→ q(x) mod 2Z,

where we extend q(x) = ⟨·, ·⟩ to L∨ by using the extension of ⟨·, ·⟩ to L⊗Q.

3. Let O(D(L), q̂) be the group of automorphisms of the abelian group D(L) that
preserve q̂ (i. e., φ ∈ O(D(L), q̂) if and only if φ is an automorphism of the abelian
group D(L) and q̂(x) = q̂(φ(x))). It is easy to see that there is a canonical group
homomorphism f : O(L) → O(D(L), q̂). The stable orthogonal group is the
kernel

Ô(L) := ker(f) ⊂ O(L).

Definition 1.1.13

Let L be a lattice. L is unimodular if any of the following equivalent conditions are
satisfied:

1. d(L) = ±1.

2. The natural inclusion i : L ↪−→ L∨ is an isomorphism.

3. D(L) = {0} (in particular, q̂ = 0).

Remark 1.1.14

Indefinite odd and even unimodular lattices of a given signature are classified (modulo
isomorphism). The proof is rather long, but not too difficult (cf. [Kon20] Theorem 1.22,
1.27). We will only use the particular case described in Important examples 1.1.15.
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Important examples 1.1.15

1. The hyperbolic plane U is is the lattice defined by the Gram matrix(
0 1
1 0

)
.

This lattice is even, unimodular, and of signature (1, 1).

2. The negative-definite root lattice of type E8 E
−
8 is the lattice defined by the

Gram matrix 

−2 0 0 1 0 0 0 0
0 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
1 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2


.

This lattice is even, unimodular, and of signature (0, 8).

3. The K3 lattice is the lattice

ΛK3 := U⊕3 ⊕ (E−
8 )

⊕2.

This lattice is even, unimodular, and of signature 3(1, 1) + 2(0, 8) = (3, 19). We
will later state while studying K3 surfaces that, if X is such a surface, this lattice
is surprisingly isomorphic to H2(X,Z) with the topological intersection form (cup
product).

Definition 1.1.16

Let L be a lattice, and let x ∈ L. Then:

1. x is isotropic if ⟨x, x⟩ = 0.

2. x is primitive if x/m ∈ L and m ∈ Z \ {0} implies m = ±1.

The following result (the conclusion for the second item is by Meyer) will be very useful for
determining when a K3 surface admits an elliptic fibration.
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Lemma 1.1.17: ([Kon20], Proposition 1.23, 1.24.)

Let L be lattice such that:

1. L is indefinite and unimodular, or

2. L is indefinite and rank(L) ≥ 5.

Then, L has a non-zero isotropic element.

The following lemma is a consequence of a result often called Eichler’s criterion (cf. [Deb22],
Theorem 2.9) and will be used in the proof of a representation theorem for effective divisors on
K3 surfaces (see Section 5.2).

Lemma 1.1.18: ([Kon20], Lemma 1.45.)

Let L be an even unimodular lattice such that L has an orthogonal decomposition L =
U⊕2 ⊕ L′. Then, for all primitive x, y ∈ L such that q(x) = q(y) = n ∈ Z, there exists
φ ∈ O(L) such that φ(x) = y. In other words, the orbit of a primitive element of L under
the action of O(L) is determined by its square.

1.2 Surfaces

Let K be an arbitrary field. An algebraic variety X over K is a separated geometrically inte-
gral scheme X of finite type over K. An algebraic surface is an algebraic variety of dimension 2.

Let X be a smooth algebraic variety. Recall that the Picard group Pic(X) is isomorphic
to the group of (Cartier, Weil) divisors modulo linear equivalence, i. e.,

Pic(X) ∼= Div(X)/ ∼lin
∼= Div(X)/PDiv(X).

We will define other equivalence relations on the group of divisors, namely algebraic equivalence
∼alg and numerical equivalence ≡, and their respective quotient groups. Then, it is well-known
that

linear equivalence =⇒ algebraic equivalence =⇒ numerical equivalence.
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Definition 1.2.1

We define algebraic equivalence ∼alg on the group of divisors step by step:

1. Let C,D ∈ Div(X) be effective. Then, C ∼′
alg D if and only if there exist a smooth

curve T ⊂ X, E ⊂ X × T effective and flat over T , and points 0, 1 ∈ T such that
E0

∼= C and E1
∼= D.

2. Let C,D ∈ Div(X) be arbitrary. Then, C ∼′
alg D if and only if there ex-

ist C1, C2, D1, D2 ∈ Div(X) effective such that C1 ∼′
alg D1, C2 ∼′

alg D2, and
C = C1 − C2, D = D1 −D2.

3. Finally, define ∼alg as the transitive closure of the relation ∼′
alg.

Definition 1.2.2

The Néron-Severi group NS(X) is the group of divisors modulo algebraic equivalence,
i. e.,

NS(X) ∼= Div(X)/ ∼alg
∼= Div(X)/Div0(X) ∼= Pic(X)/ ∼alg

∼= Pic(X)/Pic0(X),

where Div0(X) (resp., Pic0(X)) is the group of divisors (resp., line bundles modulo iso-
morphism) algebraically equivalent to zero.

Theorem 1.2.3: (Néron, Severi. Theorem of the base.)

The Néron-Severi group NS(X) is a finitely generated abelian group (i. e., its rank is
finite).

Definition 1.2.4

The Picard number ρ(X) is the rank of NS(X).

Now, let X be a smooth projective surface.



1.2. SURFACES 13

Theorem 1.2.5: ([Har77], Chapter V, Theorem 1.1.)

There is a unique pairing Div(X)×Div(X) → Z, (C,D) 7→ C.D, the intersection form,
such that:

1. For all smooth C,D ∈ Div(X) meeting transversally, C.D = #(C ∩D).

2. For all C,D ∈ Div(X), C.D = D.C. (Symmetry.)

3. For all C1, C2, D ∈ Div(X), (C1 + C2).D = C1.D + C2.D. (Additivity.)

4. For all C1, C2 ∈ Div(X) such that C1 ∼lin C2, then C1.D = C2.D. In other words,
the intersection form induces a pairing on Pic(X).

Definition 1.2.6

We define numerical equivalence ≡ on the group of divisors. Let C,D ∈ Div(X).
Then, C ≡ D if and only if for every irreducible curve C ′ ⊂ X, C.C ′ = D.C ′.

Definition 1.2.7

The numerical Néron-Severi group Num(X) is the group of divisors modulo numer-
ical equivalence, i. e.,

Num(X) ∼= Div(X)/ ≡∼= Div(X)/K ∼= Pic(X)/ ≡∼= Pic(X)/(K/ ∼lin),

where K is the kernel of the intersection form on Div(X) and the group of divisors
numerically equivalent to zero.

Remark 1.2.8

By definition, the group that comes next in the construction is a quotient of the previous.
Thus, there are natural surjections

Pic(X) → NS(X) → Num(X).

In particular, Num(X) is also a finitely generated abelian group.

We will state the Riemann-Roch theorem for surfaces (a consequence, of course, of the
famous Hirzebruch-Riemann-Roch theorem, but we will not define Chern or Todd classes),
Noether’s formula, give a few properties of ample divisors on surfaces, state the Hodge index
theorem, and then obtain the signature of the numerical Néron-Severi group Num(X).
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Theorem 1.2.9: (Riemann-Roch theorem for surfaces.)

Let L ∈ Pic(X). Then, in multiplicative notation, the theorem is

χ(L) = χ(OX) +
L.(L ⊗ ω∨

X)

2
,

where χ(·) is the Euler characteristic, and ω∨
X is the dual of the canonical bundle ωX .

In additive notation, the theorem is

χ(D) = χ(0X) +
D.(D −KX)

2
,

where D, 0X , KX ∈ Div(X) represent L,OX , ωX ∈ Pic(X), respectively.

Theorem 1.2.10: (Noether’s formula.)

Let χ(OX) (resp., χtop(X)) be the holomorphic (resp., topological) Euler characteristic
of X, and let ωX be the canonical bundle of X. Then,

χ(OX) =
(ωX .ωX) + χtop(X)

12
.

Proposition 1.2.11: (Some properties of ample divisors on surfaces.)

Let D ∈ Div(X) be ample. Then:

1. If D is very ample and C ⊂ X is a curve, then D2 = degi(X) > 0 and C.D =
degi(C) > 0, where i : X ↪−→ Pn is the embedding induced by D.

2. If E ∈ Div(X) is such that D ≡ E, then E is ample, but if additionally D is very
ample, then E is not necessarily very ample.

3. If E ∈ Div(X) is such that D.E > 0 and E2 > 0, then for all n ≫ 0 there exists
Fn ∈ Div(X) effective such that nE ∼lin Fn.

Proof. 1. [Har77], Chapter V, Exercise 1.2.

2. [Har77], Chapter V, Exercise 1.12.

3. [Har77], Chapter V, Corollary 1.8.
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Theorem 1.2.12: (Nakai-Moishezon criterion.)

Let D ∈ Div(X). Then, D is ample if and only if D2 > 0 and for every irreducible curve
C ⊂ X, C.D > 0.

Proof. If D is ample, the conclusion follows by Proposition 1.2.11.1 applied to a multiple of D.
The other direction is much harder (cf. [Har77], Chapter V, Theorem 1.10).

Theorem 1.2.13: (Hodge index theorem. [Har77], Chapter V, Theorem 1.9.)

Let D ∈ Div(X) be ample, and let E ∈ Div(X) such that E ̸≡ 0 and D.E = 0. Then,
E2 < 0.

Corollary 1.2.14

The numerical Néron-Severi group Num(X) is a free abelian group and a lattice with
the induced intersection form of signature (1, r − 1), where r ≤ ρ(X). In particular, the
index of Num(X) is 2− r.

Proof. It is easy to see that Num(X) is a lattice of rank r ≤ ρ(X). Fix an ample divisor D on
X. It is possible to take a real multiple tD ∈ Num(X) such that Num(X) = tD ⊕ D⊥. By
Sylverster’s law of inertia, we may diagonalise the Gram matrix of Num(X). One eigenvalue is
t2D2 and the others are of the form E2, where E ∈ D⊥. The conclusion follows by the (easy
direction of the) Nakai-Moishezon criterion and the Hodge index theorem.

Corollary 1.2.15

If NS(X) ∼= Num(X), r = ρ(X).

Finally, we talk about immersed and embedded curves on surfaces.

Definition 1.2.16

Let C be a smooth curve, and let f : C → X be a regular map of degree 1. Then:

1. f is an immersion if, for all x ∈ C, the differential

dxf : TxC ↪−→ Tf(x)X

is injective (i. e., non-zero).

2. f is an embedding if f is an immersion and f(C) is smooth.

3. The normal bundle of C on X is the quotient vector bundle on C

NC/X := (TX |C)/TC .
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Proposition 1.2.17: ([BT00], Remark 2.1.)

Let C be a smooth curve, and let f : C → X be an embedding. Then, the normal bundle
NC/X of C on X is a line bundle on C. If ωX

∼= OX (e. g., if X is (locally) a K3 surface),
then

NC/X
∼= ωC .

Proof. The rank of a quotient vector bundle is the difference of the two ranks. Thus,

rank(NC/X) = rank(TX |C)− rank(TC) = rank(TX)− rank(TC) = 2− 1 = 1,

and NC/X is a line bundle. If ωX
∼= OX , then, by the adjunction formula,

ωC
∼= ωX |C ⊗ det(NC/X) ∼= OX |C ⊗ det(NC/X) ∼= OC ⊗ det(NC/X) ∼= det(NC/X) ∼= NC/X .

Finally, let X be a smooth complex surface.

Proposition 1.2.18: ([BT00], Remark 2.1.)

Let C be a smooth curve, and let f : C → X be an embedding. Then, f is a local
isomorphism. In other words, there exists an (abstract) local neighbourhood U of C such
that dimC(U) = 2 and f extends to a biholomorphic map g : U → g(U) ⊂ X.

1.3 Hodge theory

Let V be a free abelian group of finite rank or a finite-dimensional Q-vector space. Define VR
and VC by scalar extension.

Definition 1.3.1

A Hodge structure of weight k ∈ Z on V is a direct sum decomposition as C-vector
spaces

VC =
⊕

p+q=k

V p,q,

where V q,p = V p,q and · denotes complex conjugation.

Notation 1.3.2

We may write V instead of a Hodge structure on V if the context is clear.

Definition 1.3.3

Let V ′ ⊂ V be a subgroup or subspace, and suppose we have Hodge structures of weight
k ∈ Z on V and V ′. We say V ′ is a sub-Hodge structure of V if both Hodge structures
are compatible (i. e., if V ′p,q = V ′

C ∩ V p,q for all p+ q = k).
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Remark 1.3.4

We may do linear algebra on Hodge structures by defining morphisms, direct sums, tensor
products, duals, etc., in a similar way. If V, V ′ be Hodge structures of weight k, k′ ∈ Z are
such that k ̸= k′, the definition of a morphism requires some care (cf. [Huy16], Chapter
3, iv. for more details).

Example 1.3.5: ([Huy16], Chapter 3, Example 1.3, 1.4.)

The integral Tate Hodge structure Z(1) is the Hodge structure of weight −2 such that
V = (2πi)Z ⊂ C and

VC = V −1,−1 = C.

We define twists

Z(k) := Z(1)⊗k, k ∈ Z+, Z(−1) := Z(1)∨, Z(k) := Z⊗−k, k ∈ Z−,

and Z(0) is the Hodge structure of weight 0 such that V = Z ⊂ C and

VC = V 0,0 = C.

We also define rational Tate Hodge structures Q(k), k ∈ Z analogously.

Important example 1.3.6

A Hodge structure V of weight 2 is of K3 type if dimC(V
2,0) = dimC(V

0,2) = 1,
dimC(V

1,1) = 20, and dimC(V
p,q) = 0 for all other p, q such that p + q = 2. We will

later state while studying K3 surfaces that, if X is such a surface, H2(X,Z) has a Hodge
structure of weight 2 of K3 type.

Let X be a smooth projective variety over C or a compact Kähler manifold such that
dimC(X) = n.

Remark 1.3.7

Recall that we may identify the C-vector space Hp,q(X) of harmonic forms of type (p, q)
on X and the Dolbeault cohomology Hq(X,Ωp

X).

We will now talk about the most important example of a Hodge structure, the Hodge
decomposition, and state some of its properties.
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Theorem 1.3.8: (Hodge decomposition.)

Let k ∈ {0, . . . , n}. Then, there is a natural decomposition

Hk(X,Z)⊗ C = Hk(X,C) =
⊕

p+q=k

Hp,q(X)

of the torsion-free part of the k-th singular cohomology of X. This decomposition is a
Hodge structure of weight k on Hk(X,Z).

Remark 1.3.9

The Hodge decomposition is remarkable as the left hand side depends only on the topolog-
ical structure of X, whereas the right hand side does depend on the complex structure of
X (but not on the choice of Kähler metric). In other words, the numbers dimC(H

p,q(X))
are “complex invariants” (in a certain sense) but not “topological invariants”.

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

...
hn,0 . . . h0,n

...
hn,n−2 hn−1,n−1 hn−2,n

hn,n−1 hn−1,n

hn,n

Table 1.1: The Hodge diamond of X.

Definition 1.3.10

The Hodge number hp,q(X) is the dimension of the C-vector space Hp,q(X). The
Hodge diamond of X is an array as in Table 1.1.

Definition 1.3.11

Let k ∈ Z+
0 . The k-th Betti number bk(X) is the rank of the abelian group Hk(X), the

k-th homology group of X.
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Proposition 1.3.12: (Properties and symmetries of the Hodge diamond.)

The Hodge diamond of X has the following non-trivial properties and symmetries:

1. bk(X) =
∑

p+q=k h
p,q(X), for all k ∈ {0, . . . , 2n}.

2. hk,k ≥ 1, for all k ∈ {0, . . . , n}.

3. Hodge symmetry, i. e. hp,q = hq,p(X). (Reflection along the vertical axis.)

4. By Serre duality, hp,q(X) = hn−p,n−q(X). (Point reflection through the middle.)

5. As X is Hyperkähler, hp,q = hn−p,q(X). (Reflection along the horizontal axis.)

1
g g

1

Table 1.2: The Hodge diamond of a smooth projective curve.

Example 1.3.13

Let C be a smooth projective curve of genus g. Then, its Hodge diamond is as in Table
1.2.

1
0 0

1 20 1
0 0

1

Table 1.3: The Hodge diamond of a K3 surface.

Important example 1.3.14

We will later state while studying K3 surfaces that, if S is such a surface, its Hodge
diamond is as in Table 1.3.

We will now set the stage to state the famous Hodge conjecture and Lefschetz (1, 1) theorem.

Definition 1.3.15

Let V be a Hodge structure of even weight 2k, k ∈ Z+. The Hodge classes in V are the
elements of V ∩ V k,k, where V ⊂ VC is the natural inclusion.
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Definition 1.3.16

An algebraic cycle Y on X is a finite formal linear combination

Y =
∑
i

niYi

of subvarieties (in the algebraic case) or submanifolds (in the complex case) Yi with
integral or rational coefficients.

Lemma 1.3.17

Let Y be an algebraic cycle on X of codimension k with coefficients in R = Z or Q. Then,
Y defines a Hodge class in H2k(X,R) (i. e., there is a class [Y ] ∈ H2k(X,R)∩Hk,k(X)).

Definition 1.3.18

An algebraic class is a Hodge class that is the image of an algebraic cycle by the map
described in Lemma 1.3.17.

The Hodge conjecture predicts the converse to Lemma 1.3.17 in the case of a smooth pro-
jective variety and R = Q (there are counterexamples assuming the negation of any of these
hypotheses, cf. [Huy16]).

Conjecture 1.3.19: (Hodge conjecture.)

Let X be a smooth projective variety over C. Then, every Hodge class in H2k(X,Q) is
algebraic.

Remark 1.3.20

Let X be a smooth projective variety. An algebraic cycle with integral coefficients of
pure codimension 1 (i. e., all subvarieties Yi are of codimension 1) is, by definition, a
(Weil) divisor on X. If Y is a divisor on X, the map described in Lemma 1.3.17 is exactly
(modulo linear equivalence) the first Chern class c1 : Pic(X) → H2(X,Z). A posteriori
(see the proof of the Lefschetz (1, 1) theorem), it will turn out that all algebraic classes
in H2(X,Z) are represented by divisors.

The integral version of the Hodge conjecture is known for k = 1.

Theorem 1.3.21: (Lefschetz (1, 1) theorem.)

Let X be a smooth projective variety over C or a compact Kähler manifold. Then,
the first Chern class c1 : Pic(X) → H2(X,Z) is surjective in H2(X,Z) ∩ H1,1(X). In
particular, every Hodge class in H2(X,Z) is algebraic.

The following short proof may be found in e. g. [GH94].
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Proof. X is a complex manifold, thus X admits an exponential sequence

0 → Z 2πi·
↪−−→ OX

exp−−→→ O×
X → 0

which induces a long exact sequence in cohomology

· · · → H1(X,O×
X)

∼= Pic(X)
c1−→ H2(X,Z) H2(2πi·)−−−−−→ H2(X,OX) ∼= H0,2(X) → · · · .

It is sufficient that the map H2(2πi·) is zero on H2(X,Z)∩H1,1(X). Indeed, the map H2(2πi·)
equals

H2(X,Z) i
↪−→ H2(X,C) = H0,2(X)⊕H1,1(X)⊕H2,0(X)

π0,2−−→ H0,2(X) ∼= H2(X,OX).

Corollary 1.3.22

Let X be a smooth projective variety over C or a compact Kähler manifold. Then, the
following bound on the Picard number of X holds:

0 ≤ ρ(X) ≤ h1,1(X).

We will now work toward stating the Hodge-theoretic version of the famous Torelli theorem
for curves. The idea, as that of all Torelli-type theorems, is that a curve is determined up to
isomorphism by its Hodge structure. We start by defining a few abstract notions (the details
are left to the reader).
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Definition 1.3.23: ([Huy16], Chapter 3, Definition 1.6.)

Let V, V ′ be a rational Hodge structures of weight k ∈ Z.

1. The Weil operator C is the C-linear map such that, for each p, q such that p+q =
n,

C : V p,q → V p,q, x 7→ ip−qx.

In particular,
C((V p,q ⊕ V q,p) ∩ VR) = (V p,q ⊕ V q,p) ∩ VR.

2. A polarisation of V is a morphism of Hodge structures

ψ : V ⊗ V → Q(−k),

such that, for all p, q such that p+ q = k,

ψR : (V p,q ⊕ V q,p) ∩ VR → R, (x, y) 7→ ψR(x,Cy)

is a positive-definite symmetric form. Here, Q(−k) is a twist of the rational Tate
Hodge structure Q(−1) (see Example 1.3.5).

3. If there exists a polarisation ψ of V , we say the pair (V, ψ) is a polarised Hodge
structure and V is polarisable.

4. If there exist polarisations ψ, ψ′ of V, V ′, a Hodge isometry is an isomorphism of
Hodge structures V

∼−→ V ′ that is compatible with the polarisations ψ, ψ′.

Remark 1.3.24

The notion of Hodge isometry is usually relaxed to mean an isomorphism of Hodge
structures that is compatible with the intersection pairing in Hn(X,Z).

Remark 1.3.25: ([Huy16], 2.1.)

In the case of Hodge structures of weight 1, it can be shown that there exist the following
natural bijective correspondences:

{ Complex tori Xn} ↔
{

Integral Hodge structures
of weight 1 Hn(X,Z)

}
,

{ Abelian varieties Xn} ↔
{

Polarisable integral Hodge structures
of weight 1 Hn(X,Z)

}
,

{ Polarised abelian varieties (Xn, D) } ↔
{

Polarised integral Hodge structures
of weight 1 (Hn(X,Z), ψ)

}
.

Here, Xn means that dimC(X) = n.
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Theorem 1.3.26: (Torelli theorem for curves. [Huy16], Theorem 2.2.)

Let C and C ′ be smooth compact complex curves. Then, C is isomorphic to C ′ if and only
if there exists an isomorphism of integral Hodge structures from H1(C,Z) to H1(C ′,Z)
that is compatible with the intersection pairing.

Remark 1.3.27

Using a more explicit form of Remark 1.3.25, we may recover the more classical statement
involving principally polarised Jacobian varieties.
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Chapter 2

Elliptic surfaces

In this chapter we provide a brief introduction to the theory of elliptic surfaces. We follow
Schütt and Shioda’s survey Elliptic Surfaces [SS10], Miranda’s notes The Basic Theory of El-
liptic Surfaces [Mir89], and Huybrechts’s book Lectures on K3 Surfaces [Huy16].

In Section 2.1, we give a short reminder about elliptic curves, define algebraic and complex
elliptic surfaces, give examples, and describe the Kodaira-Néron model.

In Section 2.2, we state the existence of the Jacobian elliptic surface and give its most im-
portant properties.

In Section 2.3, we go through Kodaira’s classification of singular fibers, Tate’s algorithm, talk
about base change, and define the j-map.

In Section 2.4, we talk about the interplay between (multi)sections and points on the generic
fiber, define the Mordell-Weil group E(K(C)), and state the relationship between E(K(C))
and NS(S) and the Shioda-Tate formula.

In Section 2.5, we give properties of line bundles on elliptic surfaces, Euler characteristic,
and the Hodge diamond.

Let K be an arbitrary field. As before, an algebraic variety X over K is a separated geo-
metrically integral scheme X of finite type over K. An algebraic curve (resp., surface) is an
algebraic variety of dimension 1 (resp., 2).

2.1 First definitions, properties, and examples

We begin with the most important prerrequisites to the chapter, the definition and properties
of elliptic curves.

25
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Definition 2.1.1

An elliptic curve is a pair consisting of a smooth projective curve E over K of genus
g(E) = 1, and a choice of base point O ∈ E(K).

Hence, the Abel-Jacobi map

φ : E
∼−→ Pic0(E), x 7→ OE(x−O),

is an isomorphism between the elliptic curve E and the group

Pic0(E) := ker(deg : Pic(E) → Z),

which in turn is isomorphic to the Jacobian variety J(E) of E (e. g., if K = C). This naturally
induces a group structure G on E, with 0G = φ−1(OE(O)).

There are two more well-known descriptions of an elliptic curve which are worth mention-
ing.

On one hand, an elliptic curve E over K = C is a complex torus

E ∼= C/L,

where L ∼= Z2 is a lattice of rank 2. The induced (additive) group structure coincides with the
group structure previously described. Two complex tori C/L1 and C/L2 are isomorphic if and
only if the lattices L1 and L2 are isomorphic in the sense introduced in Section 1.1 (with the
induced inner product from C to L1 and L2), and if C/L is a complex torus, there exists τ ∈ C
such that im(τ) > 0 and C/L ∼= C/(Z+ τZ).

On the other hand, an elliptic curve E over an arbitrary field K has a model as a smooth
cubic in P2. Bezout’s theorem (and a relatively hard argument that proves associativity) im-
plies that we can define the group structure G on E geometrically, with 0G := O being the
point of inflection. We can also find a linear transformation that maps 0G to [0, 1, 0] and the
tangent line of E at 0G to

{[x, y, z] ∈ P2 : z = 0}.
The image of E \ {0G} is contained in the affine chart

{[x, y, z] ∈ P2 : z = 1} ∼= A2,

and the image of 0G is a point at infinity. If char(K) ̸= 2, 3, this linear transformation allows
us to write the equation defining E in Weierstrass form

E : y2 = x3 + a4x+ a6.

If E is an elliptic curve over K = C given as a complex torus C/L, the Weierstrass ℘ function

℘ : C \ L→ C, z 7→ 1

z2
+

∑
ℓ∈L\{(0,0)}

(
1

(z − ℓ)2
− 1

ℓ2

)
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induces a map (℘̂, ℘̂′) between E as a complex torus and E as a smooth cubic in P2 in Weier-
strass form, with coefficients a4, a6 in terms of Eisenstein series, series that are defined in terms
of powers of elements of L.

Let E be an elliptic curve over a field K such that char(K) ̸= 2, 3.

Definition 2.1.2

The discriminant of E is the number

∆ := −16(4a34 + 27a26).

Proposition 2.1.3: ([SS10], Lemma 2.3.)

The curve E defined in Weierstrass form

E : y2 = x3 + a4x+ a6

is smooth if and only if ∆ ̸= 0.

Definition 2.1.4

The j-invariant of E is the number

j := −1728
(4a4)

3

∆
.

Proposition 2.1.5: ([SS10], Theorem 2.4.)

Let E,E ′ be elliptic curves over a field K such that char(K) ̸= 2, 3, and let j, j′ be their
j-invariants. If E ∼= E ′, j = j′. If K is algebraically closed and j = j′, E ∼= E ′.

We now give the most important definitions of the chapter.
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Definition 2.1.6

An elliptic surface may refer to any of the following objects:

1. An algebraic elliptic surface is a smooth projective surface S over K, a smooth
projective curve C over K, and a regular map

p : S → C

such that, for a general point x ∈ C, the fiber Fx = p−1(x) is a smooth projective
curve of genus g(Fx) = 1 (not necessarily an elliptic curve!)

2. A complex elliptic surface is a complex surface S, a smooth complex curve C,
and a holomorphic map

p : S → C

such that, for a general point x ∈ C, the fiber Fx = p−1(x) is a smooth connected
complex curve of genus g(Fx) = 1.

Proposition 2.1.7

We may identify algebraic elliptic surfaces S over C and projective complex elliptic sur-
faces San. Even more, the abelian categories of coherent sheaves on S and San are
equivalent.

Proof. This is a consequence of Serre’s GAGA principles and Chow’s theorem.

Remark 2.1.8

Due to Proposition 2.1.7, we will be intentionally vague with language and say elliptic
surface to refer to an algebraic or a complex elliptic surface if the statement is true in
either case.

Definition 2.1.9

Let p : S → C be an elliptic surface. Then:

1. p : S → C is smooth if S is smooth.

2. p : S → C is relatively minimal if, for all x ∈ C, the fiber Fx = p−1(x) does not
contain any −1-curve (i. e., any curve of self-intersection −1).

3. p : S → C is Jacobian or with section if p has a section (i. e., a regular or
holomorphic right inverse) s : C → S.
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Remark 2.1.10

In this thesis we will assume all elliptic surfaces to be smooth and without multiple
fibers. Furthermore, if p : S → C is a smooth elliptic surface, we can blow-down −1-
curves contained in the fibers to obtain a unique smooth relatively minimal elliptic surface
p′ : S ′ → C and a birational map f : S → S ′ such that p = p′ ◦ f . Therefore, in this
chapter we will also assume, unless explicitly said otherwise, K to be algebraically closed
and all elliptic surfaces to be relatively minimal.

We now give (a sketch of) the most important family of examples.

Example 2.1.11: (Cubic pencils. [Mir89], I.5.1.)

Let C1 and C2 be cubics in P3 defined by homogeneous polynomials p1 and p2, respectively.
The cubic pencil generated by C1 and C2 is the elliptic surface

p : S = {(x, [y, y′]) ∈ P2 × P1 : yp1(x) + y′p2(x) = 0} π2−→ P1.

Blowing up P2 at the nine base points of the cubic pencil (i. e., the points in C1∩C2 ⊂ P2)
gives a rational minimal Jacobian elliptic surface (exceptional divisors are sections)
which is birational to the cubic pencil.

Cubic pencils illustrate most of the behaviour of elliptic surfaces and their singu-
lar fibers. The interested reader may find a thorough discussion in [Mir89], I.5.

Remark 2.1.12: (Kodaira-Néron model. [SS10], 3.5.)

The generic fiber of an elliptic surface is a smooth projective curve of genus one over
K(C). If the elliptic surface is Jacobian, the generic fiber is an elliptic curve over K(C).
If E is an elliptic curve over K(C), the Kodaira-Néron model allows us to associate a
Jacobian elliptic surface to E such that its generic fiber is E. The idea is to write E in
extended Weierstrass form, and for each t ∈ C such that ∆(t) ̸= 0 (see the discussion in
Section 2.3 for more details), read the fiber Ft (i. e., the extended Weierstrass form of
Ft is the evaluation of the extended Weierstrass form of E at t). This results in a quasi-
projective surface with a fibration p∗ : S∗ → C∗ which is missing the singular fibers.
Then, by Tate’s algorithm (see Section 2.3), the singular fibers are already determined
(this may require a desingularisation of the surface). This gives a Jacobian elliptic surface
which is unique up to isomorphism.

2.2 Jacobian elliptic surfaces

Definitions 2.1.9 imply the following.
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Proposition 2.2.1

Let p̂ : J → C be a Jacobian elliptic surface. Then:

1. p̂ is surjective and s is injective.

2. For all x ∈ C such that the fiber F̂x = p̂−1(x) is a smooth connected projective
curve of genus 1, F̂x is an elliptic curve. In particular, F̂x is isomorphic to its
Jacobian J(F̂x).

3. J can be viewed as a group scheme over C and as a sheaf over C.

We now state the existence of the Jacobian elliptic surface and give its most important
properties. The construction is very natural, although technical. An excellent exposition is
found in [Huy16], Chapter 11, Section 4.

Proposition 2.2.2: ([Huy16], Chapter 11, Section 4. [BHPVdV04], Chapter
V, Section 9, 11.)

If K is algebraically closed, p : S → C is an elliptic surface, and E is its generic fiber,
we can associate an algebraic Jacobian elliptic surface p̂ : J(S) → C to p : S → C whose
fibers satisfy

F̂x
∼= p̂−1(x) = J(Fx) ∼= Pic0(Fx), ∀x ∈ C closed,

and its generic fiber Ê is isomorphic to J(E) ∼= Pic0(E).

Furthermore, if p : S → C does not admit multiple fibers, the elliptic surfaces
p : S → C and p̂ : J(S) → C are locally isomorphic (i. e., for all x ∈ C there
exists a neighbourhood U ⊂ C of x such that p|p−1(U) : p−1(U) → U is Jacobian and
p−1(U) ∼= p̂−1(U)).

This construction will prove to be central to the arguments in Chapter 5, so we will return
to it then. In particular, we will talk about the Tate-Shafarevich group, which parametrises all
elliptic surfaces with a given Jacobian.

2.3 Classification of singular fibers

Let p : S → C be an elliptic surface over K, and let E be its generic fiber over K(C).

Definition 2.3.1

Let Fx = p−1(x), x ∈ C be a singular fiber. The extended Dynkin diagram asso-
ciated to Fx is the graph constructed by drawing a vertex (ignoring multiplicity) for
each irreducible component of Fx, and drawing an edge (ignoring multiplicity) for each
intersection point between two irreducible components.
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Remark 2.3.2

Extended Dynkin diagrams are classified in families Ãn, n ≥ 1, D̃n, n ≥ 4, and Ẽn, n ≥
6. Although they are very easy to draw, we will omit their explicit description. The
interested reader may find them in [SS10], Figure 6.

Reduction Type Description
Multiplicative I0 A smooth elliptic curve (i. e., a general fiber).
Multiplicative I1 A nodal rational curve.
Multiplicative In, n ≥ 2 n smooth rational curves meeting in a cycle.
Additive II A cuspidal rational curve.
Additive III Two smooth rational curves meeting at one point of mul-

tiplicity two.
Additive IV Three smooth rational curves all meeting at one point

of multiplicity one.
Additive I∗n, n ≥ 0 n smooth rational curves of varying multiplicities meet-

ing as in the extended Dynkin diagram D̃n+4.
Additive II∗ Nine smooth rational curves of varying multiplicities

meeting as in the extended Dynkin diagram Ẽ8.
Additive III∗ Eight smooth rational curves of varying multiplicities

meeting as in the extended Dynkin diagram Ẽ7.
Additive IV∗ Seven smooth rational curves of varying multiplicities

meeting as in the extended Dynkin diagram Ẽ6.

Table 2.1: Classification of singular fibers ([Mir89], Table 1.4.1, [SS10], Figure 4.)

The possible types of singular fibers of p : S → C are as in Table 2.1. They are the same as
those of its associated Jacobian elliptic surface p̂ : J(S) → C, as they are determined by local
monodromy, which we will introduce later in this thesis (see Section 5.4). Therefore, we may
assume p : S → C is Jacobian.

The original classification was done by Kodaira in the case K = C [Kod60, Kod63]. An
algorithm was described by Tate for the case K a perfect field [Tat75]. We will only give the
first steps of Tate’s algorithm in order to introduce relevant language. We will follow a more
detailed sketch which may be found in [SS10], 4.2.

We also assume char(K) ̸= 2. In this case, the generic fiber E over K(C) may be written
in extended Weierstrass form

y2 = x3 + a2(t)x
2 + a4(t)x+ a6(t),

and the discriminant of E is

∆(t) := −4a2(t)
3a6(t)− 4a4(t)

3 + a2(t)
2a4(t)

2 − 27a6(t)
2 + 18a2(t)a4(t)a6(t),
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where t is a local parameter on C with normalised valuation vt. By the Kodaira-Néron model
(Remark 2.1.12), bases of singular fibers Ft are characterised by ∆(t) = 0 or, equivalently,
vt(∆) ≥ 1. In this case, a linear transformation maps the singular point of Ft to (x, y) = (0, 0),
the extended Weierstrass form to

y2 = x3 + a2(t)x
2 + ta′4(t)x+ ta′6(t),

and the discriminant to

∆′(t) := −4ta2(t)
3a′6(t)− 4t3a′4(t)

3 + t2a2(t)
2a′4(t)

2 − 27t2a′6(t)
2 + 18t2a2(t)a

′
4(t)a

′
6(t). (2.1)

If vt(a2) = 0 (resp., if vt(a2) ≥ 1), letting t = 0 gives a nodal (resp., cuspidal) rational curve.

Definition 2.3.3

The fiber Ft is multiplicative, semi-stable, or has multiplicative or semi-stable
reduction if vt(a2) = 0, and additive or has additive reduction if vt(a2) ≥ 1.

Remark 2.3.4: ([SS10], 7.2.)

The smooth points of any fiber Ft form an algebraic group over C. The smooth points
of the identity component (i. e., the component intersecting the zero section O, see
Notation 2.4.4) form an algebraic (sub)group isomorphic to Gm, if Ft is multiplicative,
or to Ga, if Ft is additive. This explains Definition 2.3.3.

It is easy to see that (0, 0) is also a singular point of S if and only if vt(a
′
6) ≥ 1.

If Ft is multiplicative, then by definition vt(∆
′) ≥ 1 and vt(a2) = 0. If vt(∆

′) = 1, then
by the first term of Equation 2.1, vt(a

′
6) = 0, and (0, 0) is a singular point of Ft but not of S.

This gives type I1 in Table 2.1. If vt(∆
′) ≥ 2, then (0, 0) is a singular point of Ft and S. A

series of blow-ups gives type In, where n = vt(∆
′). Note that

#{components of Ft} = vt(∆
′).

If Ft is additive, the situation is much more complicated, and results in the rest of the types in
Table 2.1. If char(K) ̸= 2, 3, we have

#{components of Ft} = vt(∆
′)− 1.

If char(K) = 2 or 3, divisibility phenomena already visible in Equation 2.1 may imply that

vt(∆
′)− 1 ≥ #{components of Ft}.

Definition 2.3.5

If Ft is additive, the index of wild ramification of Ft is the number

δt := vt(∆
′)− 1−#{components of Ft}.
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Remark 2.3.6

If Ft is additive and char(K) ̸= 2, 3,
δt = 0.

If char(K) ̸= 2, 3, the fiber type is determined completely by the values of vt(a4) and vt(a6)
(cf. [SS10], Table 1). More specifically, for each fiber type there is a range of possible values
of vt(a4) and vt(a6), and we have vt(a4) < 4 or vt(a6) < 6. If the extended Weierstrass form
does not satisfy these restrictions, there is a process called minimalising (a change of variables
involving t) which allows us to obtain a local (at t) minimal Weierstrass form that does (cf.
[SS10], 4.8). If K[C] is a principal ideal domain and K[C] = K[t] (e. g., if C = P1), then after
minimalising at all places this local form is global. If not, there may not exist a global minimal
Weierstrass form.

n Kodaira dimension κ(S) Type
1 −∞ Rational
2 0 K3
≥ 3 1 Honestly elliptic surface

Table 2.2: Classification of Jacobian elliptic surfaces over P1 as projective surfaces ([SS10],
4.10.)

Proposition 2.3.7: ([SS10], 4.10.)

Suppose C = P1 and the extended Weierstrass form is minimal at all finite places. Let
n ∈ Z+ be the smallest positive integer such that, for all i ∈ {2, 4, 6}, deg(ai) ≤ ni.
Then, n = χ(OS), and S fits into the classification of projective surfaces as in Table 2.2.

We now talk about two of the most fundamental operations on elliptic surfaces.
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Remark 2.3.8: (Base change, quadratic twists. [SS10], 5.)

If f : B → C is a surjective regular map, the base change of S from C to B is the elliptic
surface defined as the usual base change or fibered product pB : S ×C B → B. If we
write the generic fiber E of p : S → C in extended Weierstrass form, the effect of base
change is applying the pullback by f on each coefficient. The effect on smooth fibers is
that they remain smooth. If there is not any wild ramification, the effect on singular
fibers is determined by the ramification index of f at the base points modulo a small
integer (cf. [SS10], Table 3).

If char(K) ̸= 2, and E is the generic fiber of p : S → C in extended Weierstrass
form, we may also apply a quadratic twist. In other words, let d ∈ K∗, and consider the
extended Weierstrass form

Sd : y2 = x3 + da2(t)x
2 + d2a4(t)x+ d3a6(t).

The effect on singular fibers is also classified (cf. [SS10], (16)).

We finish the section by stating two important definitions.

Definition 2.3.9

The j-map of p : S → C is the birational map

j : C → P1, t 7→ j(Ft),

where j(·) is the j-invariant, regular at the base points of smooth fibers. If j is constant,
p : S → C is isotrivial.

2.4 Mordell-Weil group

Let p : S → C be a Jacobian elliptic surface over K, and let E be its generic fiber over K(C).

Remark 2.4.1: ([SS10], 3.4.)

A point P ∈ E(K(C)) is equivalent to a section sP : C → S. Indeed, if P ∈ E(K(C)), we
take the closure P of P in S, and, by Zariski’s main theorem, the restriction p|P : P → C
is an isomorphism. Then, the section sP : C → S is the inverse p|−1

P
. Conversely, if

s : C → S is a section, then the point Ps ∈ E(K(C)) is the restriction s(C) ∩ E. This
construction will hold true much later in this thesis, when we talk about multisections
(see Section 5.3).
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Definition 2.4.2

The Mordell-Weil group E(K(C)) of S is the set of K(C)-rational points of E.

Theorem 2.4.3: (Mordell-Weil theorem for Jacobian elliptic surfaces.)

The Mordell-Weil group E(K(C)) is a finitely generated abelian group.

By Remark 2.4.1, a point P ∈ E(K(C)) is equivalent to a section sP : C → S, which defines
a divisor DP = sP (C) ∈ Div(S).

Notation 2.4.4

If D ∈ Div(S) is a divisor, we will also write D for its image in the Néron-Severi group
NS(S). Choose a zero rational point 0E(K(C)) ∈ E(K(C)). We will write O for the divisor
D0E(K(C))

defined by the zero section s0E(K(C))
: C → S.

It is not too surprising, then, that there exists a geometric proof of the Mordell-Weil theorem
for Jacobian elliptic surfaces which uses ideas from lattice and intersection theory, and also
sheds some light on the relationship between E(K(C)) and NS(S). We will only state the most
important results on this relationship, as they will prove to be very useful. The interested
reader is referred to [SS10], 6 for more details.

Theorem 2.4.5: ([SS10], Theorem 6.5.)

On S, algebraic equivalence ∼alg and numerical equivalence ≡ are equivalent. In partic-
ular, NS(S) ∼= Num(S), a free abelian group and a lattice with the induced intersection
form of signature (1, 1− ρ(X)) (see Corollary 1.2.14, 1.2.15).

Proposition 2.4.6

Let x, x′ ∈ C. Then, Fx ∼alg Fx′ and Fx.Fx = 0. In particular, if F is a smooth fiber,
F.F = 0.

Definition 2.4.7

A divisor D ∈ Div(S) is vertical if it is contained in a fiber Fx, x ∈ C. It is horizontal
if it is not vertical.

Notation 2.4.8

We will use the notation in Table 2.3.
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Notation Description
F A smooth fiber.
Fx The fiber above x ∈ C (i. e., Fx = p−1(x)).
nx The number of components of the fiber Fx.
Cx,0 The component of the fiber Fx intersecting the zero sec-

tion O.
Cx,i The other components of a reducible fiber Fx, indexed

by {1, . . . , nx − 1}.
Tx The sublattice of NS(S) generated by the components

Cx,i of a reducible fiber not intersecting the zero section
O.

Table 2.3: Notation for divisors on the fibers of an elliptic surface (similar to [SS10], 6.4.)

Definition 2.4.9

The trivial lattice T is the sublattice of NS(S) generated by the zero section O and the
fiber components F,Cx,0, Cx,i, i ∈ {1, . . . , nx − 1}.

Proposition 2.4.10: ([SS10], Proposition 6.6.)

The trivial lattice
T = ZO ⊕ ZF ⊕

⊕
x∈C,Fx reducible

Tx.

In particular,

rank(T ) = 2 +
∑

x∈C,Fx reducible

(nx − 1).

We may now state the relationship between E(K(C)) and NS(S). In short, NS(S) is
generated by vertical divisors and sections.

Theorem 2.4.11: ([SS10], Theorem 6.3.)

There exists a group isomorphism

φ : E(K(C))
∼−→ NS(S)/T, P 7→ DP mod T.

Corollary 2.4.12: (Shioda-Tate formula.)

The Picard number

ρ(S) = rank(T ) + rank(E(K(C))) = 2 +
∑

x∈C,Fx reducible

(nx − 1) + rank(E(K(C)).
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2.5 Invariants

Let p : S → C be a Jacobian elliptic surface over K.

The canonical divisor KS is vertical and algebraically equivalent to a multiple of a smooth
fiber F . The proof uses Zariski’s lemma, spectral sequences, and the Riemann-Roch theorem.

Theorem 2.5.1: [SS10], Theorem 6.8.

There exists a line bundle L ∈ Pic(C) such that deg(L) = −χ(OS) and the canonical
bundle

ωS = p∗(ωC ⊗ L∨).

Furthermore,
KS ∼alg (2g(C)− 2 + χ(OS))F.

Corollary 2.5.2

KS.KS = 0.

Proof. This follows from Proposition 2.4.6 and Theorem 2.5.1.

Corollary 2.5.3: ([SS10], Corollary 6.9.)

Let P ∈ E(K(C)). Then,
DP .DP = −χ(OS).

Proof. This follows from the adjunction formula.

Theorem 2.5.4: ([SS10], Theorem 6.10.)

The topological Euler characteristic

χtop(Fx) =


0, if Fx is smooth ,

nx, if Fx is multiplicative ,

nx + 1, if Fx is additive ,

∀x ∈ C,

and
χtop(S) =

∑
x∈C

(χtop(Fx) + δx),

where the sum is actually finite and runs over the singular fibers.
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Corollary 2.5.5: ([SS10], Corollary 6.11.)

The Euler characteristic

χ(OS) =
χtop(S)

12
.

In particular, if p : S → C has a singular fiber,

χ(OS) > 0.

Proof. This follows from Noether’s formula (Theorem 1.2.10), Corollary 2.5.2, and Theorem
2.5.4.

1
g(C) g(C)

g(S) = H0(S, ωS) 10χ(OS) + 2g(C) g(S) = H0(S, ωS)
g(C) g(C)

1

Table 2.4: The Hodge diamond of a Jacobian complex elliptic surface.

Proposition 2.5.6: ([SS10], 6.10.)

If p : S → C is complex, its Hodge diamond is as in Table 2.4.



Chapter 3

K3 surfaces

Dans la seconde partie de mon rapport, il s’agit des variétés kählériennes
dites K3, ainsi nommées en l’honneur de Kummer, Kähler, Kodaira et de
la belle montagne K2 au Cachemire.

- André Weil.

In this chapter we provide a brief introduction to the theory of K3 surfaces. We mostly
follow Huybrechts’s book Lectures on K3 Surfaces [Huy16], Makarova’s article General Intro-
duction to K3 Surfaces [Mak16], and Schütt and Shioda’s survey Elliptic surfaces [SS10].

In Section 3.1, we define algebraic and complex K3 surfaces, give properties and examples,
prove that the natural surjections Pic(X) → NS(X) → Num(X) are isomorphisms, and talk
about H2(X,Z) and ΛK3.

In Section 3.2, we introduce the period domain, deformations, the period map, and talk about
the local and global Torelli theorems for K3 surfaces.

In Section 3.3, we give examples of elliptic K3 surfaces, and necessary and sufficient condi-
tions for a K3 surface to admit an elliptic fibration.

Let K be an arbitrary field. As before, an algebraic variety X over K is a separated ge-
ometrically integral scheme X of finite type over K. An algebraic surface (resp., complex
surface) is an algebraic variety (resp., complex manifold) of dimension 2.

39
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3.1 First definitions, properties, and examples

Notation 3.1.1

Let X be an algebraic variety over K of dimension n. Recall the different notations and
identities for the canonical bundle of X:

ωX := det(ΩX) = ∧n
i=1ΩX =: Ωn

X .

Definition 3.1.2

A K3 surface may refer to any of the following objects:

1. An algebraic K3 surface over K is a complete smooth surface X such that
ωX

∼= OX and h1(X,OX) = 0.

2. A complex K3 surface is a compact connected complex surface such that Ω2
X
∼=

OX and h1(X,OX) = 0.

Proposition 3.1.3: (Basic properties of algebraic K3 surfaces.)

Let X be an algebraic K3 surface.

1. There is a non-canonical isomorphism ΩX
∼= Tx.

2. h2(X,OX) = h0(X,OX).

3. χ(OX) = 2.

4. χtop(X) = 24.

Proof. 1. The exterior product ΩX ×ΩX → ωX
∼= OX induces a non-canonical isomorphism

ΩX
∼= Ω∨

X =: TX .

2. By Serre duality, a choice of trace map induces an isomorphismH2(X,OX) ∼= H0(X,O∨
X⊗

ωX)
∨ ∼= H0(X,OX)

∨.

3. χ(OX) := h0(X,OX)− h1(X,OX) + h2(X,OX) = 1− 0 + 1.

4. By Noether’s formula (Theorem 1.2.10), 2 = 0+χtop(X)

12
.

The proofs of the following facts are outside the scope of this thesis, so they may as well be
stated now (cf. [Deb22], [Huy16]).
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Proposition 3.1.4: (More properties of complex K3 surfaces.)

1. If X is a complex K3 surface, then the defining conditions Ω2
X

∼= OX and
H1(X,OX) = 0 are equivalent to the existence of a non-degenerate nowhere van-
ishing holomorphic (2, 0) form ω on X.

2. All complex K3 surfaces are Kähler. In particular, if X is a complex K3 surface,
there exists a real closed (1, 1) form on X associated to a Hermitian metric, the
Kähler form.

3. The local Torelli theorem (which we will later state, see Theorem 3.2.8) implies
that all complex K3 surfaces are deformation equivalent. In particular, they are
diffeomorphic.

4. The theory of analytic elliptic surfaces implies that all complex K3 surfaces are
simply connected.

Remark 3.1.5

By Proposition 3.1.4, complex K3 surfaces are the two-dimensional Calabi Yau manifolds,
n-dimensional Kähler manifolds with trivial canonical bundle. They are also Hyperkähler.

The following proposition is a consequence of a result sometimes referred to as the Zariski-
Goodman theorem (cf. [Mak16]).

Proposition 3.1.6

Let K be an algebraically closed field. Then, a complete smooth surface over K is
projective.

Corollary 3.1.7

Let K be an algebraically closed field. Then, an algebraic K3 surface is projective.

Proposition 3.1.8

We may identify algebraic K3 surfaces X over C and projective complex K3 surfaces Xan.
Even more, the abelian categories of coherent sheaves on X and Xan are equivalent.

Proof. This is a consequence of Serre’s GAGA principles and Chow’s theorem.

The following are classical examples of K3 surfaces. In fact, it was André Weil (see the
epigraph at the beginning of the chapter) who provided the original definition, while studying
all smooth surfaces diffeomorphic to a smooth quartic in P3 [SS10].
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Figure 3.1: A smooth quartic surface. The figure shows part of the real locus ([BTo19]).
Author: BTotaro.

URL: https://commons.wikimedia.org/wiki/File:K3_surface.png.

License: https://creativecommons.org/licenses/by-sa/4.0/legalcode.

Examples 3.1.9

1. A smooth quartic X in P3 (see Figure 3.1). The degree of this K3 surface is 4.

2. A smooth complete intersection of type (2, 3) in P4 and (2, 2, 2) in P5. The degree
of these K3 surfaces is 6 and 8, respectively.

3. A double covering of P2 branched on a sextic curve, all over a field of characteristic
not equal to two.

4. A Kummer surface (i. e., the desingularisation of the quotient A/i, where A is an
abelian surface over an algebraically closed field of characteristic not equal to two,
and i is the natural involution

i : A→ A, x 7→ −x,

which has 16 fixed points).

Proof. We will only prove item 1, and give an idea for item 2. The other proofs may be found
in e. g. [Mak16], Example 1.1.5, 1.1.4.

1. By the adjunction formula,

ωX
∼= (ωP3 ⊗OP3(4))|X ∼= (OP3(−4)⊗OP3(4))|X ∼= OP3|X ∼= OX .

The ideal sheaf IX
∼= OP3(−4) induces a short exact sequence

0 → OP3(−4) ↪−→ OP3 −→→ OX → 0,

https://commons.wikimedia.org/wiki/File:K3_surface.png
https://creativecommons.org/licenses/by-sa/4.0/legalcode
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which induces a long exact sequence in cohomology

· · · → H1(P3,OP3) → H1(X,OX) → H2(P3,OP3(−4)) → · · ·

As hi(Pn,OPn(m)) ̸= 0 implies i = 0 or i = n, H1(X,OX) is between two trivial terms,
thus it is also trivial.

2. The idea is to (inductively) use a similar argument to prove that a smooth complete
intersection of type (d1, . . . , dn) in Pn+2 is a K3 surface if and only if

∑n
i=1 di = n + 3.

Then, to (naturally) assume that all di > 1, and to finally obtain the finite possibilities
by basic combinatorics.

Theorem 3.1.10: (Riemann-Roch theorem for K3 surfaces.)

Let X be an algebraic K3 surface, and let L ∈ Pic(X). Then,

χ(L) = 2 +
L.L
2
,

where χ(·) is the Euler characteristic.

Proof. Start with the Riemann-Roch theorem for surfaces (Theorem 1.2.9) and use the fact
that ωX is trivial (by definition) and that χ(OX) = 2 (Proposition 3.1.3.3).

Proposition 3.1.11: ([Mak16], Proposition 1.2.9.)

Let X be an algebraic K3 surface. Then, the natural surjections

Pic(X) → NS(X) → Num(X)

(see Remark 1.2.8) are isomorphisms. In particular, Pic(X) is an even lattice with the
induced intersection form of signature (1, ρ(X)− 1).

Proof. We prove the map Pic(X) → Num(X) is injective. Let L ∈ Pic(X) be non-trivial. If for
all ample divisors L′, L.L′ ̸= 0, then L is not numerically trivial. If there exists L′ ∈ Pic(X)
ample such that L.L′ = 0, then L∨.L′ = 0. By Proposition 1.2.11.1 applied to a very ample
multiple of L′, L and L∨ are not represented by an effective divisor. In particular,

H0(X,L) = H0(X,L∨) = 0.

By Serre duality,

H2(X,L) = H0(X,L∨ ⊗ ωX)
∨ = H0(X,L∨ ⊗OX)

∨ = H0(X,L∨)∨.

In particular,
χ(L) := h0(X,L)− h1(X,L) + h2(X,L) = −h1(X,L) ≤ 0.
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By the Riemann-Roch theorem for K3 surfaces (Theorem 3.1.10),

χ(L) = 2 +
L.L
2

≤ 0

and L.L < 0, then L is not numerically trivial. Therefore, Pic(X) → Num(X) is injective, and
an isomorphism.

By Corollary 1.2.14, 1.2.15, Num(X) is a lattice with the induced intersection form of sig-
nature (1, ρ(X)− 1), thus Pic(X) too. By the Riemann-Roch theorem for K3 surfaces,

L.L = 2(χ(L)− 2),

thus the lattice is even.

Corollary 3.1.12

Let X be an algebraic K3 surface. Then, the intersection form on Pic(X) is non-
degenerate, and Pic(X) is torsion-free.

Proof. This follows by Proposition 3.1.11 and our definition of lattice.

We give the following important fact about complex K3 surfaces and give an idea of the
proof.

Proposition 3.1.13: ([Mak16], Fact 2.1.2. [SS10], 12.2.)

Let X be a complex K3 surface. Then, the integral cohomology H2(X,Z) is a lattice
with the topological intersection form (cup product). It is isomorphic to the K3 lattice

ΛK3 = U⊕3 ⊕ (E−
8 )

⊕2

(see Important examples 1.1.15). It is even, unimodular, and of signature (3, 19). Fur-
thermore, H2(X,Z) is an integral Hodge structure of weight 2 of K3 type (see Important
example 1.3.6). In particular, any non-zero (2, 0) form ω on X generates H2,0(X) as a
C-vector space, and ω generates H0,2(X).

Proof. (Idea.) For the first part, it is sufficient to prove that H2(X,Z) is even, unimodular,
and of signature (3, 19), as then the classification of indefinite even unimodular lattices (see
Remark 1.1.14) implies that it is isomorphic to ΛK3. To show that it is even, one uses Wu’s
formula. To show that it is unimodular, one uses Poincaré duality. To obtain the signature,
one uses the topological index theorem.
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Remark 3.1.14: ([Mak16], Remark 2.1.3.)

If X is a complex K3 surface that is not projective, it can be shown that the first Chern
class c1 : Pic(X) ↪−→ H2(X,Z) is an embedding of lattices (i. e., the intersection forms
are compatible), and that this implies that the natural surjection Pic(X)

∼−→ NS(X) is
an isomorphism. However, NS(X) and Num(X) may not be isomorphic!

Remark 3.1.15

The Hodge diamond of an algebraic or complex K3 surface is as in Table 1.3. Therefore,
if X is a complex K3 surface, then, by Corollary 1.3.22,

0 ≤ ρ(X) ≤ h1,1(X) = 20.

In general, if X is an algebraic K3 surface over an arbitrary field, then we only have

0 ≤ ρ(X) ≤ b2(X) = 22.

3.2 Deformations and Torelli theorem

We start by defining the period domain and giving its main properties. Recall the definition of
the K3 lattice ΛK3 (see Important examples 1.1.15).

Definition 3.2.1: ([Mak16], Definition 2.3.1.)

The period domain is the set

D := {x ∈ P(ΛK3,C) : (x, x) = 0, (x, x) > 0)}.

Proposition 3.2.2

The period domain is an (analytic) open subset of a smooth quadric in P21
C . In particular,

dimC(D) = 20.

Proof. By definition, the rank of ΛK3 is 22, so P(ΛK3,C) ∼= P21
C . The bilinear form in ΛK3 is

equivalent to a non-degenerate quadratic form, which defines a smooth quadric of dimension
20. The additional condition (x, x) is open in the analytic topology.

We now define deformations, markings, and the period map.
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Definition 3.2.3: ([Mak16], Definition 2.3.3. [Huy16], Chapter 6, 2.3.
[Vak00].)

Let
F (XT , T ) : XT → T

be a smooth proper family of K3 surfaces with a distinguished point 0T ∈ T and fibers
Xt := XT ,t, t ∈ T such that T is connected and simply connected.

1. We say F (XT , T ) is a local deformation of X0.

2. The family F (XT , T ) is complete or a versal deformation ofX0 if, for all smooth
proper families F (X ′

T ′ , T ′) : X ′
T ′ → T ′ such that X0

∼= X ′
0, there exists a morphism

T ′ → T such that
X ′

T ′ ∼= XT ×T T ′.

3. The family F (XT , T ) of X0 is the universal deformation if it is a versal defor-
mation and the morphism T ′ → T is unique.

Proposition 3.2.4: ([Mak16], Fact 2.3.3.)

LetX0 be a complex K3 surface. Then, there exist local deformations ofX0. Furthermore,
the universal deformation F (XT , T ) : XT → T exists and dimC(T ) = 20.

Proposition 3.2.5

Let X0 be a complex K3 surface, and let F (XT , T ) : XT → T be a local deformation
of X0. The fact that T is simply connected implies that for all t ∈ T there exists a
canonical isomorphism φt : H

2(Xt,Z)
∼−→ H2(X0,Z).

Let X0 be a complex K3 surface, and let F (XT , T ) : XT → T be a local deformation of X0.

Definition 3.2.6

1. A marking is an isomorphism φ : H2(X0,Z)
∼−→ ΛK3 (see Proposition 3.1.13).

2. The period map is the map

P : T → P(ΛK3,C), t 7→ [φC ◦ φt,C(H
2,0(Xt))],

(see Proposition 3.1.13, 3.2.5).

Proposition 3.2.7: ([Mak16], Fact 2.3.2.)

The period map is holomorphic and its range is contained in D ⊂ P(ΛK3).

We may now state the local deformation-theoretic version of the Torelli theorem for complex
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K3 surfaces.

Theorem 3.2.8: (Local Torelli theorem for complex K3 surfaces. [Mak16],
Theorem 2.3.4.)

The period map is a local isomorphism.

Remark 3.2.9: ([Mak16], Fact 2.3.5, Theorem 2.3.6.)

The universal deformations of K3 surfaces in Proposition 3.2.4 may be glued to obtain a
global universal family

F (X ′
T ′ , T ′) : X ′

T ′ → T ′

such that T ′ is not Haussdorff and dimC(T ′) = 20. The base T ′ is the moduli space of
K3 surfaces with a fixed marking

φ : H2(X,Z) ∼−→ ΛK3.

The global period map
P : T ′ → P(ΛK3,C)

is surjective on D and a local isomorphism. It can be shown that there exists a bijective
correspondence between the period domain D and certain Hodge structures of K3 type
on ΛK3 that are related to polarised Hodge structures. Therefore, although we have
not described how a polarisation of a complex K3 surface X induces a polarisation of
the Hodge structure H2(X,Z), it makes sense that the global period map is injective
if we also take into account polarisations on the domain. Clearly, this would imply a
Hodge-theoretic version of the Torelli theorem for complex K3 surfaces.

Definition 3.2.10: ([Mak16], Definition 2.3.4.)

A polarised complex K3 surface is a pair (X,L), where X is a complex K3 surface, and
L is an ample line bundle.

Remark 3.2.11

Not all complex K3 surfaces are polarisable, as not all complex K3 surfaces are projective.
Let X be a complex K3 surface, and let ω be a (2, 0) form on X. By the Nakai-Moishezon
criterion (Theorem 1.2.12) and the Lefschetz (1, 1) theorem (Theorem 1.3.21), if X is
algebraic, then there exists x ∈ (φ◦c1)(Pic(X)) ⊂ ΛK3 such that (x, x) > 0 and (ω, x) = 0.
Furthermore, X determines a hyperplane

HX := {x ∈ ΛK3,C : (ω, x) = 0}.

For a general point x ∈ HX such that (x, x) > 0, either x or −x is a polarisation of X.

We now state the Hodge-theoretic version of the Torelli theorem for complex K3 surfaces.
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Theorem 3.2.12: (Global Torelli theorem for complex K3 surfaces. [Mak16],
Corollary 2.3.8.)

Let (X,L) and (X ′,L′) be polarised complex K3 surfaces. Then, (X,L) is isomorphic
to (X ′,L′) if and only if there exists a Hodge isometry H2(X,Z) to H2(X ′,Z) such that
c1(L) maps to c1(L′).

3.3 Elliptic K3 surfaces

We start by stating a fact and giving examples.

Proposition 3.3.1: (Cf. [SS10], 12.7.)

Let p : S → C be an elliptic K3 surface. Then, C = P1.
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Examples 3.3.2

1. ([SS10], Example 12.5.) A family of elliptic K3 surfaces S may be obtained by
applying an adequate quadratic base change or an adequate quadratic twist to a
rational elliptic surface over P1. The Picard number satisfies

ρ(S) ≥ 10.

2. ([SS10], Example 12.6.) If char(K) ̸= 2, and E and E ′ are two elliptic curves over
given in Weierstrass form

E : y2 = f(x), E ′ : y2 = g(x′),

then the desingularisation of the double sextic

S : y2 = f(x)g(x′)

is a model for the Kummer surface E × E ′. The projections to E and E ′ give
two isotrivial elliptic fibrations with four singular fibers of type I∗0 at ∞ and the
three roots of f and g, respectively. The Picard number depends on the number of
isogenies from E to E ′:

ρ(S) =


18, if E and E ′ are not isogenous,

19, if E and E ′ are isogenous and do not have complex multiplication,

20, if E and E ′ are isogenous and have complex multiplication.

3. ([Has03], Example 6.12.) If S is a quartic in P3 containing a line

D = {[u, v, x, y] ∈ P3 : u = v = 0},

the projection p from S to the first two coordinates u, v gives an elliptic fibration.
Indeed, each element [α, 1] ∈ P1 gives a hyperplane in P3 containing D:

Hα = {[u, v, x, y] ∈ P3 : u+ αv = 0}.

There exists a cubic Eα on S such that

Hα ∩ S = D ∪ Eα

and p−1([α, 1]) = Eα. This covers S by cubics Eα, and Eα is a smooth projective
curve of genus one for a general [α, 1] ∈ P1, thus this gives an elliptic fibration.

4. ([Has03], Example 6.12.) An instance of the example in the previous item is the
Fermat surface

S = {[u, v, x, y] ∈ P3 : u4 + v4 − x4 − y4 = 0}

containing the line

D = {[u, v, x, y] ∈ P3 : u− x = v − y = 0}.
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We give a characterisation of elliptic K3 surfaces which gives a converse to Proposition 2.4.6.

Proposition 3.3.3: ([SS10], Proposition 12.8, 12.10.)

Let S be an algebraic K3 surface. Then, S admits an elliptic fibration if and only if there
exists a non-trivial divisor D ∈ NS(S) such that D.D = 0. If the class D ∈ NS(S) is
represented by a singular rational projective curve Drational, S admits a unique elliptic
fibration with Drational contained in its singular fibers. Furthermore, any projective curve
D′ on X such that D.D′ = 1 induces a section of the elliptic fibration.

Corollary 3.3.4

Let S be an algebraic K3 surface such that ρ(S) = 1. Then, S does not admit an elliptic
fibration.

Proof. By Corollary 3.1.12, NS(S) is a free abelian group. Let D be a generator of NS(S). If
there exists a non-trivial divisor nD ∈ NS(S), n ∈ Z+ such that n2D.D = 0, then mD.D = 0
for all m ∈ Z+, and NS(S) is trivial, a contradiction.

Alternatively, this is an easy consequence of the Shioda-Tate formula (Corollary 2.4.12).

Corollary 3.3.5: ([SS10], Corollary 12.9.)

Let S be an algebraic K3 surface such that ρ(S) ≥ 5. Then, S admits an elliptic fibration.

Proof. (Idea.) Any indefinite lattice of rank greater than or equal to 5 has a non-trivial element
of square zero. Then, apply Proposition 3.3.3.

The following follows from a result of Nikulin.

Proposition 3.3.6: ([SS10], Lemma 12.22.)

Let S be an algebraic K3 surface over C such that ρ(S) ≥ 13. Then S admits a Jacobian
elliptic fibration.

The situation for 2 ≤ ρ(S) ≤ 4 depends on S.

Finally, we give results about the singular fibers.
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Remark 3.3.7

If char(K) ̸= 2, 3 and p : S → P1 is an elliptic K3 surface, by Theorem 2.5.4 and
Proposition 3.1.3, we have

χtop(S) = 24 =
∑
x∈P1

χtop(Fx),

where the sum is actually finite and runs over the singular fibers. By the classification of
singular fibers (see Table 2.1), this restricts the possible number of fibers of each type.

Proposition 3.3.8: ([Huy16], Remark 1.12.)

A general elliptic K3 surface has exactly 24 singular fibers all of type I1.

Proposition 3.3.9: ([BT00], Lemma 3.26.)

Let p : S → P1 be a complex elliptic K3 surface such that ρ(S) ≤ 19. Then, p : S → P1

has at least four singular fibers, including at least one multiplicative fiber.
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Chapter 4

Integral and rational points

In this chapter we provide a brief introduction to rational and integral points, along with a
short survey of the current state of the art.

In Section 4.1, we mostly follow Hassett’s article Potential Density of Rational Points on Al-
gebraic Varieties [Has03] and then survey results in Bogomolov and Tschinkel’s article Density
of Rational Points on Elliptic K3 Surfaces [BT00], Huang’s article Rational Points on Elliptic
K3 Surfaces of Quadratic Twist Type [Hua21], and Huybrechts’s book Lectures on K3 Surfaces
[Huy16].

In Section 4.2, we follow the first chapter of Corvaja’s book Integral Points on Algebraic Va-
rieties, An Introduction to Diophantine Geometry [Cor16] and Hassett and Tschinkel’s article
Density of Integral Points on Algebraic Varieties [HT01].

Let K be a number field. A variety X over K is a separated geometrically integral scheme X of
finite type over K. Let X be a variety over K. XK is the base change of X to an algebraically
closed field extension K of K.

4.1 Rational points

4.1.1 First definitions, properties, and examples

Definition 4.1.1

A K-rational point x of X is a point x ∈ XK such that its coordinates lie in K.
Equivalently, it is a section sx : Spec(K) → X of the structural morphism X → Spec(K).
The set of K-rational points of X is denoted X(K).

53



54 CHAPTER 4. INTEGRAL AND RATIONAL POINTS

Remark 4.1.2

If K is algebraically closed, X(K) determines much of the structure of the variety X. If
not, clearly, X(K) may even be empty. The philosophy behind the second definition is
that of identifying a scheme up to isomorphism with its functor of points

Hom(·, X) : AffSchop → Set,

where AffSch and Set are the categories of affine schemes and sets, respectively. This
philosophy will be useful later, when we define integral points.

Notation 4.1.3

If the ground field K is clear and K ′ is a field extension of K, we will write X(K ′) instead
of XK′(K ′).

Definition 4.1.4

The set of K-rational points of X X(K) is dense if it is not contained in any Zariski
closed subset of X. It is potentially dense if there exists a finite field extension K ′ of
K such that X(K ′) is dense.

The following example motivates the notion of density, as we are interested in rational points
that do not satisfy any equation that is not a multiple of the equations defining the variety.

Example 4.1.5: (Cf. [Has03], 1.)

If
X = {[x, y] ∈ P1

Q : x3 + y3 = 1},

then X(Q) is also contained in

X ′ = {[x, y] ∈ P1
Q : xy = 0},

thus X(Q) is not dense.

Note that
(−1)3 + (

3
√
2)3 = 1,

thus X(Q( 3
√
2)) is not contained in X(Q( 3

√
2)) ∩X ′(Q( 3

√
2)).

A motivation for the notion of potential density is that we are interested in geometric
properties of X, instead of properties that depend on K.
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Examples 4.1.6: ([Has03], Example 2.2, 2.3.)

1. Pn(Q) and Pn(K) are dense.

2. If
X = {[x, y, z] ∈ P2

Q : x2 + y2 + z2 = 0},

then X(Q) is empty, but if

X ′ = {[x, y, z] ∈ P2
Q : x2 + y2 − z2 = 0},

then there are isomorphisms

XQ(i)
∼−→ X ′

Q(i), [x, y, z] 7→ [x, y, iz]

and
P1
Q(i)

∼−→ X ′
Q(i), [x, y] 7→ [2xy, x2 − y2, x2 + y2].

Therefore, as P1(Q(i)) is dense, X(Q(i)) too, and X(Q) is potentially dense (see
Corollary 4.1.10).

The second example motivates the following definitions.

Definition 4.1.7

X is:

1. Brauer-Severi, if there exists n ∈ Z+ such that XK
∼= Pn

K
.

2. Unirational, if there exists a finite field extensionK ′ ofK, n ∈ Z+, and a dominant
rational map Pn −→ XK′ .

Proposition 4.1.8

If X is Brauer-Severi, then there exists a finite field extension K ′ of K, n ∈ Z+ and an
isomorphism Pn ∼−→ XK′ . In particular, X is unirational.

Proposition 4.1.9: ([Has03], Proposition 3.1.)

If X and Y are projective varieties over K, f : Y −→ X is a dominant rational map,
and Y (K) is potentially dense, then X(K) is potentially dense.

Proof. Let K ′ be a field extension of K such that Y (K ′) is dense, and let U ⊂ YK′ be the dense
open domain of definition of fK′ : YK′ −→ XK′ . Identify U = U(K ′), and note that fK′ is
dominant and the image of a dense set under a dominant rational map is dense.
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Corollary 4.1.10: ([Has03], Corollary 3.3.)

If X is unirational, then X(K) is potentially dense. In particular, if X is Brauer-Severi,
then X(K) is potentially dense.

Corollary 4.1.11

Potential density is a birational invariant.

We give the following generalisation of Proposition 4.1.9 without proof. The interested
reader may find a sketch on [Has03], Proposition 3.4.

Theorem 4.1.12: (Chevalley-Weil.)

If X, Y are proper varieties over K, f : Y → X is an étale morphism, and Y (K) is
potentially dense, then X(K) is potentially dense.

4.1.2 Some known results

Proposition 4.1.13

If X(Q) is non-empty, then for all valuations v on Q, X(Qv) is non-empty. In particular,
X(A), where A is the adele ring, is non-empty.

The Hasse principle (cf. [SS10], 13.17) is the converse, i. e., if X(A) is non-empty, then
X(Q) is non-empty. The Hasse principle is true for conics (i. e., smooth projective curves of
genus zero and degree two) in P2

Q, and is the basis for an algorithm that determines whether a
conic in P2

Q has a Q-rational point. The Hasse principle is also true for smooth projective curves
of genus zero over Q, as every one of them admits a model as a conic in P2

Q. Furthermore, if X
is a smooth projective curve of genus zero over K and X(K) is non-empty, then X(K) ∼= P1

K ,
so X(K) is dense.

In general, however, the Hasse principle is not true. In 1970, Manin (cf. [Man96]) found
that this could be explained by the Brauer-Manin obstruction. In short, he considered the
Brauer group Br(X) (which is often isomorphic to the Tate-Shafarevich group, which we will
use extensively in Section 5.3), and defined an action on X such that the subsets

X(Q) ⊂ X(A)Br(X) ⊂ X(A)

are proper. Whether the Brauer-Manin obstruction is the only obstruction to the Hasse prin-
ciple is a difficult question.

The Hasse principle is not true for smooth projective curves of genus one over Q. A coun-
terexample due to Ernst Selmer (see [Sel51]) is the following curve

{[x, y, z] ∈ P2
Q : 3x3 + 4y3 + 5z3 = 0}.
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If X is a smooth projective curve of genus one over K and X(K) is non-empty, then X is an
elliptic curve and we have the well-known Mordell-Weil theorem and Birch-Swinnerton-Dyer
conjecture. If X is an elliptic curve and the Mordell-Weil rank of X is positive, X(K) is
potentially dense (see [SS10], 13.16).

Theorem 4.1.14: (Mordell-Weil.)

Let A be an abelian variety over K. Then, the Mordell-Weil group A(K) of K-rational
points of A is abelian and finitely-generated. In particular, if X is an elliptic curve over
K, X(K) is abelian and finitely-generated.

If the genus is greater than or equal to 2, we have Falting’s theorem.

Theorem 4.1.15: (Falting.)

If X is a smooth projective curve of genus g(X) ≥ 2, then X(K) is finite.

Corollary 4.1.16

If X is a smooth projective curve of genus g(X) ≥ 2, then X(K) is not potentially dense.

Colliot-Thélène, Skorobogatov, and Swinnerton-Dyer (cf. [Has03], Example 3.7) constructed
an example of a variety such that its set of K-rational points is not potentially dense by de-
riving a contradiction with the Chevalley-Weil theorem (Theorem 4.1.12) and Falting’s theorem.

A generalisation of Falting’s theorem is the Bombieri-Lang conjecture, which is true for sub-
varieties of abelian varieties of general type (see [Has03], Conjecture 3.8). Recall that X is of
general type if the canonical bundle ωX is big, i. e., if the Kodaira dimension κ(X) is maximal
(equal to dim(X)).

Conjecture 4.1.17: (Bombieri-Lang.)

If X is projective and of general type, then X(K) is not potentially dense.

In the case of Fano varieties (cf. [Has03], 5), it is known that they do not admit any non-
trivial étale covers, and that they do not dominate varieties of general type. It is also known
that Del Pezzo surfaces (i. e., Fano varieties of dimension two) are birational to P2, thus, by
Corollary 4.1.11, they have (potentially) dense K-rational points. Smooth cubic hypersurfaces
of dimension greater than or equal to two are Fano and unirational, thus, by Corollary 4.1.10,
they have potentially dense K-rational points. Smooth Fano threefolds (i. e., varieties of di-
mension three) are unirational except in three cases, two of which admit generalised elliptic
fibrations over P2.

The answer to the question of potential density is affirmative for abelian varieties.
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Definition 4.1.18

If X is an abelian variety, a rational point x ∈ X(K) is non-torsion if the orbit Zx is
infinite, and non-degenerate if Zx is dense.

Theorem 4.1.19: ([Has03], Proposition 4.2.)

If X is an abelian variety, there exists a field extension K ′ of K such that X(K ′) contains
a non-degenerate point.

Corollary 4.1.20

If X is an abelian variety, X(K) is potentially dense.

There are many approaches which can be used to propagate rational points on algebraic
varieties. In [Has03], Hassett elaborates on three approaches involving additional geometric
structures, such as abelian fibrations, and using subvarieties where it is easier to find rational
points, namely non-degenerate, non-torsion, or elliptic multisections. Other methods use the
group of automorphisms. In [BT00], Bogomolov and Tschinkel use elliptic fibrations and the
group of automorphisms to propagate rational points on K3 surfaces. The main aim of this
thesis is to discuss their work in detail, and we will dedicate Chapter 5 to this endeavour. We
now give a flavour of the ideas involved in a generalisation of these results.

Definition 4.1.21

Let B be a variety over K. An abelian fibration p : X → B over K is a projective
morphism such that the generic fiber F is an abelian variety over the function field K(B).
A generalised elliptic fibration is an abelian fibration of relative dimension one.

In Section 5.3 we will define multisections. For now, it is sufficient to know that a multi-
section induces a point in the generic fiber of the abelian fibration. In the case of a generalised
elliptic fibrations, a multisection is non-torsion (i. e., its induced point in the generic is non-
torsion) if and only if it is non-degenerate.

Theorem 4.1.22: ([Has03], Proposition 4.13.)

If p : X → B be an abelian fibration over K with a non-degenerate multisection M such
that M(K) is dense, then X(K) is dense.

We now state the main results in [BT00], which include a specialisation of Theorem 4.1.22.

Theorem 4.1.23: ([BT00], Theorem 1.1.)

If X is a K3 surface such that X admits an elliptic fibration p : X → C or the group of
automorphisms Aut(X) is infinite, then X(K) is potentially dense.
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Corollary 4.1.24: (Cf. [BT00].)

If X is a K3 surface, the following conditions imply that X(K) is potentially dense:

1. ρ(XC) = 1, and X is a double cover of P2 ramified in a singular curve of degree six.

2. ρ(XC) = 2 and X does not contain a −2-curve (i. e., a curve of self-intersection
equal to 2).

3. ρ(XC) = 3, except possibly for 6 isomorphism classes of lattices Pic(XC).

4. ρ(XC) = 4, except possibly for 2 isomorphism classes of lattices Pic(XC).

5. ρ(XC) ≥ 5.

Recent results by Huang (cf. [Hua21]) concern a family of K3 surfaces over Q called of
Cassels-Schinzel type. They arise as isotrivial quadratic twists or, alternatively, as twisted
Kummer surfaces associated to the product of two twisted elliptic curves. If d ∈ Z+, the affine
model is

Sd,1 = {(x, y, t) ∈ A3
Q : d(1 + t4)y2 − x3 + x = 0}.

The approach in [Hua21] relates density in the analytic and Zariski topology and is guided by
conjectures of Mazur, Corvaja and Zannier. Their main theorem is:

Theorem 4.1.25: ([Hua21], Theorem 1.4.)

There exists an infinite set of square-free integers d ∈ Z+ such that Sd,1(Q) is (Zariski)
dense.

Another interesting topic is the relationship between rational points and rational curves.
This topic is not well-understood, but there is a conjecture:

Conjecture 4.1.26: (Bogomolov’s logical possibility. Cf. [Huy16], Chapter 13,
0.3.)

If X is a K3 surface and x ∈ X(K), then XK contains a rational curve C such that
x ∈ C.

Corollary 4.1.27

Suppose Bogomolov’s logical possibility is true. If X is a K3 surface, then X contains
infinitely many rational curves.

In [BT00], Bogomolov and Tschinkel prove that, if X admits an algebraic elliptic fibration
p : X → C and ρ(XC) ≤ 19, then there exist infinitely many rational multisections on X.
They also restate a result by Bogomolov and Mumford that implies that every polarised K3
surface contains at least one rational curve. The ideas by Bogomolov and Tschinkel have led to
a stronger theorem of Chen and Lewis (cf. [Huy16], Chapter 13, Theorem 5.1.) on analytical
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density of rational curves on polarised K3 surfaces. Finally, we mention a strong conjecture,
which is true for unirational K3 surfaces (equivalent to supersingular K3 surfaces), and which
has been a strong motivation for recent research:

Conjecture 4.1.28: ([Huy16], Chapter 13, Conjecture 0.2.)

If (XK , H) is a polarized K3 surface, then XK contains infinitely many rational curves C
such that there exists nC ∈ Z+ with C ∼lin nCH.

4.2 Integral points

As in the case of rational points, there are two approaches to defining integral points on a
variety over K. Both require an extension of the usual definition of the ring of K-integers OK ,
as suggested by the following example.

Example 4.2.1

Let p ∈ Z+ be a prime, and consider the line of equation px+ py = 1 in A2
Q. It does not

have any integral points (i. e., points with coordinates in Z), although it is isomorphic
to the line of equation x+ y = 1 in A2

Q, which has infinitely many integral points. Both
lines have infinitely many points with coordinates in Z[1/p].

Recall that a place ofK is an equivalence class of absolute values overK, where two absolute
values are equivalent if they induce the same topology. By Ostrowski’s theorem, a place of K
is either non-archimedean (also finite, p-adic, ultrametric) or archimedean. Non-archimedean
places are in bijective correspondence to non-zero prime ideals of OK . If v is a non-archimedean
place corresponding to a prime ideal p, an absolute value is

| · |v : K → Q, x 7→ |x|v = (1/2)ordp(x),

where ordp(x) is the maximal exponent of p in the prime factorisation of xOK . Archimedean
places are in bijective correspondence to embeddings of K in C up to conjugation.
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Definition 4.2.2

Let v is a non-archimedean place. The ring of v-integers is the local valuation ring

Ov := {x ∈ K : |x|v ≤ 1}

with unique maximal ideal

mv := {x ∈ K : |x|v < 1}

and finite residue field
κv := Ov/mv.

Let S be a finite set of places containing all archimedean places. The ring of S-integers
is the ring

OS := {x ∈ K : ∀v ̸∈ S, |x|v ≤ 1}.

Remark 4.2.3

If v is a non-archimedean place corresponding to a prime ideal p, |x|v < 1 if and only if
p|xOK (“p is in the numerator of x”), |x|v = 1 if and only if p ̸ |xOK and p ̸ |x−1OK ,
and |x|v > 1 if and only if p|x−1OK (“p is in the denominator of x”). Therefore, x ∈ OS

if and only if all prime ideals p in the denominator of x are in S. If S contains only the
archimedean places, OS = OK .

Recall also that if v is a non-archimedean place, there exists a reduction modulo v map

·v : Pn
K → Pn

κv
, x = [x0, . . . , xn] 7→ xv = [λxx0 +mv, . . . , λxxn +mv],

where λx ∈ K is such that, for all i ∈ {0, . . . , n}, λxxi ∈ Ov, and not all λxxi ∈ mv. If X ⊂ Pn
K

is a projective variety defined by a homogeneous ideal IX ofK[x0, . . . , xn], the reduction modulo
v of X is the projective variety Xv ⊂ Pn

κv
defined by the homogeneous ideal

(IX ∩ Ov[x0, . . . , xn])/mv

of κv[x0, . . . , xn].
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Definition 4.2.4

Let S a finite set of places containing all archimedean places, let X ⊂ Pn
K be a projective

variety, let D ⊂ X be a reduced effective Weil divisor, and let x ∈ X. Then:

1. x reduces modulo v to D if xv ∈ Dv.

2. x is an integral point of (X,D) or integral with respect to D if, for all non-
archimedean places v of K, xv does not reduce modulo v to D. In particular,
x ̸∈ D.

3. x is an S-integral point of (X,D) if, for all places v ̸∈ S, xv does not reduce
modulo v to D.

Remark 4.2.5: (Cf. [Cor16], 1.)

LetX ⊂ An
K be an affine variety, and let i : An

K ↪−→ Pn
K be the canonical embedding. Then,

the S-integral points of (i(X), i(X) \ i(X)) are exactly the points of X with coordinates
in OS. This recovers the intuitive definition of integral points discussed in Example 4.2.1.

Example 4.2.6: (Cf. [Cor16], 1.)

Let X = A1
Q, and let

i : A1
Q ↪−→ P1

Q, x 7→ [x, 1].

If S contains only the archimedean places and x = a/b ∈ Q, a, b ∈ Z, gcd(a, b) = 1, b ̸= 0
is such that i(x) = [x, 1] is an S-integral point of (i(X), i(X) \ i(X)), then [a, b] ̸≡ [1, 0]
mod p for all p ∈ Z+ prime. In particular, p ̸ |b for all p ∈ Z+ prime, thus b = ±1 and
x ∈ Z = OS.

The second approach to defining integral points is a generalisation to schemes over K. It
rests upon the notion of a model.
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Definition 4.2.7

Let S be a finite set of places of K containing all archimedean places, let X be a variety
over K, let D ⊂ X be a reduced effective Weil divisor, and let U = X \D.

1. A model of X over OS is a flat scheme X → Spec(OS) such that the generic fiber

XK := X ×Spec(OS) K
∼= X.

2. Let X → Spec(OS) be a model of X over OS. An S-integral point of X is a
section s : Spec(OS) → X of the structural morphism X → Spec(OS). The set of
S-integral points of X is denoted X (OS).

3. Let X ,D → Spec(OS) be (compatible) models of X,D over OS, respectively, such
that X is a normal proper scheme. An S-integral point of (X ,D) is an S-integral
point s : Spec(OS) → X of X such that s does not intersect D, i. e., such that, for
each prime ideal p ∈ Spec(OS), s(p) ̸∈ Dp.

We give a few claims in [HT01] as a proposition, and we give an idea of the proof in the
projective case.

Proposition 4.2.8: ([HT01], 2.1.)

Consider the setup in Definition 4.2.7.

1. Let x ∈ X(K). Then, there exists a finite set S of places of K containing all
archimedean places and a model of X over OS such that x ∈ X (OS).

2. Let x ∈ X(K) such that x ̸∈ D. Then, there exists a (large) finite set S of places
of K containing all archimedean places and a model of X over OS such that x is
an S-integral point of (X ,D).

3. There exists a finite field extension K ′ of K, a finite set S ′ of places of K ′ containing
all archimedean places, and a model X of X such that the set of S ′-integral points
of (XSpec(OS′ ),DSpec(OS′ )) is non-empty.

Proof. (Idea in the projective case.)

1. Enlarge S to include the set of prime ideals in the denominator of x.

2. Let f1, . . . , fk be regular functions on X defining (the irreducible components of) D. As
x /∈ D, fi(x) is non-zero for all i ∈ {1, . . . , k}, so we may enlarge S to include the prime
ideals in the numerators of the numbers fi(x).

3. As X(K) \ D(K) is non-empty, there exists a finite field extension K ′ of K such that
X(K ′) \D(K ′) is non-empty. Then, the claim follows from Item 2.
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Remark 4.2.9: (Cf. [Cor16], 1.)

Definition 4.2.4 depends on the embedding X ↪−→ Pn
K . In fact, to specialise Definition

4.2.7 to Definition 4.2.4, note that, for every ring OS, there exists a canonical integral
model of Pn

K over OS. This induces an integral model of X over OS via the embedding
X ↪−→ Pn

K .

Definition 4.2.10: (Cf. [HT01], 1.)

We say integral points on (X,D) are potentially dense if there exists a finite field
extension K ′ of K, a finite set S ′ of places of K ′ containing all archimedean places, and
a model X of X over OS such that the set of S ′-integral points of (XSpec(OS′ ),DSpec(OS′ ))
is Zariski dense in XSpec(OS′ ).

Remark 4.2.11: (Cf. [HT01], 1.)

Potential density does not depend on the choices of S ′ or X . Similarly to the case of
rational points, Hassett and Tschinkel study potential density of integral points by using
large automorphism groups and additional geometric structures. In particular, they say
“the analogs of elliptic fibrations in log geometry are conic bundles with a bisection
removed” [HT01].

Definition 4.2.12: ([HT01], Definition 2.1.)

1. A pair is an ordered pair (X,D), where X is a normal proper variety, and D ⊂ X
is a reduced effective Weil divisor.

2. A morphism of pairs f : (X,D) → (X ′, D′) is a regular map f : X → X ′ such
that f−1(D′) ⊂ D. In particular, f |X\D : X \D → X ′ \D′.

3. A morphism of pairs f : (X,D) → (X ′, D′) is dominant if f : X → X ′ is dominant.

4. A morphism of pairs f : (X,D) → (X ′, D′) is proper if f : X → X ′ and f |X\D :
X \D → X ′ \D′ are proper.

5. A resolution of a pair (X ′, D′) is a proper morphism of pairs f : (X,D) → (X ′, D′)
such that X is smooth, D is normal crossings, and f : X → X ′ is birational.

6. Finally, a pair (X ′, D′) is of log general type if there exists a resolution f :
(X,D) → (X ′, D′) such that ωX(D) := ωX ⊗OX(D) is big.
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Proposition 4.2.13: ([HT01], Definition 2.1.)

1. If (X,D) dominates (X ′, D′) and integral points on (X,D) are dense, then integral
points on (X ′, D′) are dense (after a choice of model).

2. If (X ′, D′) is of log general type, then for all resolutions f : (X,D) → (X ′, D′),
ωX(D) is big.

We may now state Vojta’s conjecture, which is an important generalisation of the Bombieri-
Lang conjecture (Conjecture 4.1.17).

Conjecture 4.2.14: (Vojta. [HT01], Conjecture 2.2.)

Let (X ′, D′) be a pair of log general type. Then, integral points on (X ′, D′) are not
potentially dense.

If D = ∅, then we recover the Bombieri-Lang conjecture (Conjecture 4.1.17).

The converse for Vojta’s conjecture is false (cf. [HT01], 3 for a detailed discussion). In the
remainder of this section, we will work toward stating a possible converse given in [HT01]. On
the way, we will state a generalisation of the Chevalley-Weil theorem (Theorem 4.1.12).

Definition 4.2.15: ([HT01], Definition 3.1, 3.2.)

1. A dominant morphism of pairs f : (X,D) → (X ′, D′) is arithmetically contin-
uous if density of integral points on (X ′, D′) implies potential density of integral
points on (X,D).

2. A pseudo-étale cover of pairs is a dominant proper morphism of pairs f :
(X,D) → (X ′, D′) such that f : X → X ′ is generically finite and the map from the
normalisation X̂ ′ of X ′ to X ′ is étale on X ′ \D′.

Proposition 4.2.16: ([HT01], Remark 3.3, 3.5.)

1. If X is a normal proper variety, D = ∅, and f : P → X is a projective bundle, then
f is arithmetically continuous.

2. If (X ′, D′) is a pair, then there exists a pair (X,D) and a birational pseudo-étale
morphism of pairs f : (X,D) → (X ′, D′) such that X is smooth and D is normal
crossings.

3. If p : X → X ′ is a generalised elliptic fibration and D′ ⊂ X ′ is a divisor such
that the restriction p|p−1(X′\D′) : p−1(X ′ \ D′) → X ′ \ D′ is isotrivial, then p is
arithmetically continuous.

We may now state a generalisation of the Chevalley-Weil theorem (Theorem 4.1.12).
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Theorem 4.2.17: ([HT01], Theorem 3.4.)

Let f : (X,D) → (X ′, D′) be a pseudo-étale cover of pairs. Then, f is arithmetically
continuous.

Finally, we state a possible converse to Vojta’s conjecture.

Conjecture 4.2.18: (Possible converse to Vojta’s conjecture. [HT01], Problem
3.7.)

Let (X ′, D′) be a pair such that there does not exist any pseudo-étale cover f : (X,D) →
(X ′, D′) such that (X,D) dominates a pair of log general type. Then, integral points on
(X ′, D′) are potentially dense.



Chapter 5

Rational points on elliptic K3 surfaces

In this chapter we expand on the ideas originally in Bogomolov and Tschinkel’s article Density
of Rational Points on Elliptic K3 Surfaces [BT00], wherein they prove that if a K3 surface
admits an elliptic fibration or has an infinite group of automorphisms, then it has potentially
dense rational points, here Theorem 4.1.23.

In Section 5.1, we show that an immersed curve is semi-regular, i. e., that it admits a de-
formation of immersed curves.

In Section 5.2, we give the definition and properties of the effective monoid of an algebraic
K3 surface. We also give a representation theorem for effective divisors by sums of rational
curves.

In Section 5.3, we give the definition and properties of multisections. We introduce a gen-
eralisation of Jacobian elliptic surfaces. We also give the definition and properties of the
Tate-Shafarevich group, which is one of the most important tools used in the article.

In Section 5.4, we give the definition and properties of the local and global monodromy of
an elliptic surface.

In Section 5.5, we give a lower bound for the genus of a torsion multisection, and use the
Tate-Shafarevich group to find infinitely many rational non-torsion multisections on an alge-
braic K3 surface.

Finally, in Section 5.6, we give properties of the automorphism group of an algebraic K3 sur-
face, and give the idea of an argument that uses it to prove potential density. We also give an
argument that uses multisections. We finish with the main theorem and its consequences.

5.1 A deformation argument

In this section we work with complex K3 surfaces. Recall our discussion about immersions of
curves on surfaces (see Definition 1.2.16, Proposition 1.2.18, 1.2.17) and families and deforma-

67
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tions of K3 surfaces (see Definition 3.2.3, Proposition 3.2.4). Figure 5.1 will serve as a visual
aid throughout.

Notation 5.1.1

As before, we write
F (XT , T ) : XT → T

for a family with a distinguished point 0T ∈ T and fibers Xt := XT ,t, t ∈ T . We abuse
this notation slightly by using the same symbol X· for families over different base spaces

F (X·, ·) : X· → ·

as long as the distinguished fiber X0 remains isomorphic. This will come in handy for
dealing with subfamilies and (uni)versal deformations, and should not lead to confusion.

S·

S0

T
T ′

D0

V

U·

U0

C·

C0

f
,
g

F (S ·, ·)

F (U ·,
·)

F (UV , V)

G

0T

0V

Figure 5.1: A deformation argument.

Let S0 be a complex K3 surface, and let

F (ST , T ) : ST → T

be a (smooth) local deformation of S0 as in Proposition 3.2.4 (i. e., T is a complex ball of
dimension 20, and the fibers St := ST ,t, t ∈ T are complex K3 surfaces).

Let C0 be a smooth rational curve, and let f0 : C0 → S0 be an immersion. As a divisor
of X, C0 defines an algebraic class Ĉ0 := (c1 ◦ f0)(C0) ∈ H2(S0,Z). If t ∈ T , the deformed
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image f0(C0) in St also defines a class Ĉt ∈ H2(St,Z). Let

F (ST ′ , T ′) : ST ′ → T ′

be the smooth subfamily such that this class is algebraic. Clearly, S0 ⊂ ST ′ , so we may choose
the same zero in the base spaces (i. e., 0T = 0T ′). It can be shown that T ′ is a complex ball of
dimension 19.

Theorem 5.1.2: ([BT00], Proposition 2.2.)

There exist a smooth family of smooth curves

F (CT ′ , T ′) : CT ′ → T ′

and a holomorphic map f : CT ′ → ST ′ such that C0 = CT ′,0 and f |C0 = f0.

Proof. By Proposition 1.2.18, there exists a neighbourhood U0 of C0 of dimension 2 such that
f0 extends to a biholomorphic map g0 : U0 → g0(U0) ⊂ S0.

The smooth family F (ST , T ) and g0 induce a smooth family

F (UT , T ) : UT → T

and a holomorphic map g : UT → ST such that U0 = UT ,0 and g|U0 = g0.

It can be shown that there exists a versal deformation (see Proposition 3.2.4)

F (UV ,V) : UV → V

such that U0 = UT ,0
∼= UV,0, F (UT , T ) is the pullback of F (UV ,V) by a surjective map

G : T → V , and V is a complex ball of dimension 1.

Since G is surjective, D0 := G−1(0V) is a divisor on T , and have 0T ∈ D0. Furthermore,
if t ∈ D0, then

C0 ⊂ U0 = UT ,0
∼= UV,0 ∼= UT ,t = Ut. (5.1)

Let t ∈ T \ T ′. By definition, the deformed image f0(C0) in St defines a class Ĉt ∈ H2(St,Z)
that is not algebraic. Thus, the pullback of this class by g|Ut : Ut → g(Ut) ⊂ St,

g∗(Ĉt) := g|∗Ut
(Ĉt|g(Ut)) ∈ H2(Ut,Z) (5.2)

is also not algebraic. Indeed, the non-degenerate nowhere vanishing holomorphic (2, 0) form
ωSt (see Proposition 3.1.4) on St induces a non-degenerate (2, 0)-form

g∗(ωSt) := g|∗Ut
(ωSt |gt(Ut))

on Ut. By the Lefschetz (1, 1) theorem (Theorem 1.3.21) and the Hodge decomposition of
H2(St,Z) (Proposition 3.1.13), the integral of ωSt over Ĉt is non-zero. By definition, this im-
plies that the integral of g∗(ωSt) over g∗(Ĉt) is also non-zero. By a similar argument (g is a
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local isomorphism), the claim follows.

Now, let t ∈ D0. By construction, the image of C0 in Ut (see Equation 5.1) defines the same
class in H2(Ut,Z) as g∗(Ĉt) (see Equation 5.2). As this class is algebraic, we have D0 ⊂ T ′. As
T ′ is irreducible, we have equality. The theorem follows by restricting the family F (UT ′ , T ′)
and g to these images.

5.2 A representation theorem for effective divisors

Let S be an algebraic K3 surface over an arbitrary field.

Definition 5.2.1

The effective monoid Λeff(S) is the monoid of all classes in Pic(S) represented by an
effective divisor.

The aim of this section is to give a sketch of the proof of a theorem by Bogomolov and
Mumford that allows us to represent a line bundle in the effective monoid by sums of rational
curves. Another proof of the x.x > 0 case may be found in [MM82].

Lemma 5.2.2: (Cf. [BT00].)

Let x be a generator of Λeff(S). Then, exactly one of the following holds:

1. x.x = −2, in which case x is represented by a smooth rational curve.

2. x.x = 0, in which case x is represented by an elliptic curve E and a singular
rational curve C. Furthermore, there exists an elliptic fibration without multiple
fibers f : S → P1 such that its smooth fiber is E and its singular fibers contain C.

3. x.x is positive and even.

Proof. By Proposition 3.1.11, the lattice Pic(S) is even. The claim if x.x = 0 follows by a proof
of Proposition 3.3.3. For a detailed analysis of the effective cone of an algebraic K3 surface, see
e. g. [Huy16].

Lemma 5.2.3: ([BT00], Corollary 2.7.)

Let x ∈ Λeff(S) be primitive. Then, x is uniquely determined by its self-intersection x.x.

Proof. After a choice of marking on S, the lattice Pic(S) contains Λeff(S) and is embedded in
ΛK3. A choice of marking on S is a choice of automorphism in O(ΛK3). By Lemma 1.1.18, the
orbit of x under the action of O(ΛK3) is determined by its square.

The proofs of Lemmas 5.2.4, 5.2.5 are a bit outside of the scope of this thesis, as they use
technical results about the moduli spaces of hyperelliptic curves and K3 surfaces. We give a
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rough sketch, but more details may be found in [BT00]. The author made the conscious decision
to give more complete arguments in the next sections instead, where we talk extensively about
multisections of elliptic fibrations.

Lemma 5.2.4: ([BT00], Lemma 2.11)

Let n ∈ Z+ be even. Then, there exist a K3 surface Sn and a rational curve Cn ⊂ Sn

such that Cn.Cn = n.

Proof. (Idea.) First, one considers a curve C of genus 2, its Jacobian J(C), the quotient
J(R)/(Z/lZ), l odd (a posteriori, l = n + 3), and the natural map π : C → J(R)/(Z/lZ).
Then, one proves that for a generic curve C of genus 2, π(C) contains exactly 6 points in
J(R)/(Z/lZ)[2], the 2-torsion of J(R)/(Z/lZ), and these points are smooth in π(C) ([BT00],
Lemma 2.9). To do this, one proves that, if x is a torsion point in J(C) such that x ∈ C, then
x is one of the 6 standard points of J(C)[2], and then that this implies the claim. Here one
uses the universal family

F (CT , T ) : CT → T
of smooth curves of genus 2 and level 2, which is embedded in the universal family

F (JT ′ , T ′) : JT ′ → T ′

of Jacobians of dimension 2 and level 2. The family F (CT , T ) has 6 natural sections, which
correspond to a point in J(Ct)[2] for each t ∈ T . The family F (JT ′ , T ′) has 16 natural sections,
and 6 of them are contained in CT . One also uses the monodromy of the family F (CT , T ) and
torsion multisections of the family F (JT ′ , T ′), in a similar way to Section 5.4, 5.5.

Then, one proves that the self-intersection (π(C), π(C)) = 2l ([BT00], Lemma 2.10). One
considers the blow-up Sl−3 of the quotient J(C)/D2l at the images of the 16 points in J(C)[2],
where D2l is the dihedral group (of order 2l). Then, one proves that S2l is a K3 surface, and
that the rational curve is the image of π(R)/(Z/2Z) in S2l, of self-intersection l − 3.

Lemma 5.2.5: ([BT00], Lemma 2.12.)

Let n ∈ Z+ be even, let Sn be as in Lemma 5.2.4, and let x ∈ Λeff(S) be primitive such
that x.x = n. Then, there exists a smooth family

F (ST ′′ , T ′′) : ST ′′ → T ′′

of K3 surfaces such that:

1. dim(T ′′) = 1.

2. There exist t0, t1 ∈ T ′′ such that St0 := ST ,t0 = Sn and St1 := ST ,t1 = S.

3. For all t ∈ T ′′, the deformation xt of x ∈ Pic(S) in Pic(St) is in Λeff(St).

4. The class xt1 ∈ Λeff(St1) is represented by a rational curve.
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Proof. (Idea.) One considers the moduli space Dx of marked K3 surfaces with a fixed algebraic
class x (see Remark 3.2.11). The quotient D′

x := Dx/ Stab(x,O(Dx)) is a coarse moduli space
of K3 surfaces with a fixed algebraic class x. The quotient D′′

x of D′
x by a subgroup of Stab(x)

of finite index acting freely on Dx is a fine moduli space of K3 surfaces with a fixed algebraic
class x, a polarisation of a generic point. One takes x = Cn as in Lemma 5.2.4 and finds the
base points tn and t of Sn and S, respectively, in D′′

x. One connects tn and t by a curve, and
argues about the images of x in the fibers on the curve. One uses Theorem 5.1.2.

Theorem 5.2.6: ([BT00], Theorem 2.4.)

Let x ∈ Λeff(S). Then, x is represented by a sum of rational curves. In particular, if x
is primitive and a generator of Λeff(S), then x is represented by an irreducible rational
curve.

Proof. We may assume x ∈ Λeff(S) is primitive. By Item 4 of Lemma 5.2.2, we may further
assume n = x.x is positive and even. Then, by Lemma 5.2.4, we may realise n as the self-
intersection of a rational curve Cn on a K3 surface Sn. By Lemma 5.2.5, we may deform Sn

and Cn to S and a rational curve representing x.

5.3 Multisections and Tate-Shafarevich group

Let p : S → C be an elliptic fibration over C (i. e., S is a smooth projective surface, C is a
smooth projective irreducible curve, and the generic fiber E is a smooth projective curve of
genus 1, all over C). Recall that we may also study the fibration analytically (see Proposition
2.1.7).

p

C

Fx = p−1(x)

M

x

S

y1

y2 y3 y4

Figure 5.2: A multisection.
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Definition 5.3.1

A multisection on S is an irreducible subvariety (resp., submanifold) M of S of di-
mension 1 such that the restriction p|M : M → C is surjective (its degree deg(p|M) is
non-zero) and finite.

Definition 5.3.2

Let
M̂ =

∑
i

niMi

be a finite formal linear combination of multisections with integral coefficients. Then:

1. The degree of M̂ is the degree of the restriction

dS(M̂) := deg(p|M̂).

2. Let i : S ↪−→ J(S) be the natural inclusion (which extends to algebraic 0-cycles),
and let E be the generic fiber. The class map of M̂ is the map

τM̂ : S → J(S), x 7→ dS(M̂) · i(x)− i(M̂ ∩ E).

Remark 5.3.3

Multisections generalise sections as they allow for more complex intersections with the
fibers of p (e. g., tangential, multiple, etc.) Recall that the number of points (with
multiplicities) on a fiber of p|M is finite, constant, and equal to dS(M) ([Har77], Chapter
II, Proposition 6.9). In particular, as M is irreducible and of dimension 1, M is also a
divisor on S, thus dS(M) =M.E. Figure 5.2 may be useful.

The Picard number ρ(E) of the generic fiber E is equal to 1. More specifically, the short
exact sequence of abelian groups

0 → Pic0(E) ↪−→ Pic(E)
deg−−→→ Z → 0

induces an isomorphism from the Néron-Severi group of E

ˆdeg : NS(E) = Pic(E)/Pic0(E)
∼−→ Z.

Moreover, the restriction

r : Pic(S) → Pic(E)/Pic0(E)
ˆdeg−−→ Z, L 7→ ˆdeg(L|E + Pic0(E))

is well-defined.
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Definition 5.3.4

The degree of S is the index

dS := [Z : r(Pic(S))].

Proposition 5.3.5

Let M be a multisection of degree dS(M) on S. Then, dS|dS(M).

Proof. Simply note that, by Bezout’s lemma,

r(Pic(S)) = ⟨r(L)Z : L ∈ Pic(S)⟩ = gcd({r(L) ∈ Z : L ∈ Pic(S)})Z,

so

dS = gcd({r(L) ∈ Z : L ∈ Pic(S)}),

and that

dS(M) = r(OS(M)).

Lemma 5.3.6

Let D,D′ ∈ Div(S) such that D is not a multiple of D′, D′ is effective, and D.D′ < 0.
Then,

h0(S,OS(D)) = 0.

Proof. If, for all D′′ representing OS(D), D′′ is not effective, then claim follows. If there exists
D′′ effective, then D′′.D′ = D.D′ := deg(OS(D)|D′), and there exists a point P ∈ D ∩D′ such
that vP (D

′′) = vP (D) < 0, a contradiction.

Proposition 5.3.7: ([BT00], Lemma 3.5.)

There exists a multisection M of degree dS(M) = dS on S.

Proof. Let E be a general fiber. By the proof of Proposition 5.3.5, there exists D ∈ Div(S)
such that

D.E := deg(OS(D)|E) = r(OS(D)) = dS.

(Actually, this works if E is the generic fiber, but it is still true after specialising). Let Dn =
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D + n · E, n ∈ Z+. By the Riemann-Roch theorem for surfaces (Theorem 1.2.9),

χ(Dn) = χ(0S) +
Dn.(Dn −KS)

2

= χ(0S) +
D.D + 2n(D.E) + n2(E.E)−D.KS − n(E.KS)

2

(Theorem 2.5.1) = χ(0S) +
D.D + 2n(D.E) + n2(E.E)− AS,C(D.E − n(E.E))

2

(Lemma 5.2.2.2) = χ(0S) +
D.D + 2n(D.E)− AS,C(D.E)

2
,

thus, there exists n0 ∈ Z+ such that for all n ≥ n0, χ(Dn) > 0. Fix n ≥ n0. Similarly, we also
calculate

(KS −Dn).E = KS.E −D.E − n(E.E)

= AS,C(E.E)−D.E − n(E.E)

= −D.E
= −dS < 0.

Then, by Serre duality and Lemma 5.3.6 (as E.E = 0, KS −Dn is not a multiple of E),

h2(S,OS(Dn)) = h0(S, ωS ⊗OS(Dn)
∨) = 0.

This implies that

h0(S,OS(Dn)) = χ(OS(Dn)) + h1(S,OS(Dn))− h2(S,OS(Dn)) > 0.

In other words, OS(Dn) ∈ Pic(S) is represented by an effective divisor, thus it is a multisection.
Finally, note that

dS(Dn) = Dn.E = D.E = dS.

Corollary 5.3.8: ([BT00], Corollary 3.6.)

The order of [S] in H1(C, J(S)) is equal to dS.

Proof. This is a consequence of the construction of the elliptic fibrations Jm which we will talk
about later on. More details may be found in e. g. [Huy16] Chapter 11, Remark 4.4.

Let p̂ : J(S) → C be the Jacobian elliptic fibration associated to S (see Section 2.2), let
F̂x = p̂−1(x) be its fiber over x ∈ C, and let i : S → J(S) be the natural inclusion.

Notation 5.3.9

If C is an algebraic curve, we will omit the inclusion C ↪−→ J(C) from C to its Jacobian.
In other words, if x ∈ C, we will also write x ∈ J(C).
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Definition 5.3.10

Let M be a multisection on S (see Figure 5.2). Then:

1. M is torsion of order m if m ∈ Z+ is minimal such that for all x ∈ C and
y1, y2 ∈M ∩ Fx, i(y1)− i(y2) ∈ J(F̂x)[m] (i. e., y1 − y2 is torsion of order m in the
Jacobian of F̂x).

2. M is non-torsion or a nt-multisection if for a general point x ∈ C there exist
y1, y2 ∈M ∩ Fx such that i(y1)− i(y2) ∈ J(F̂x) is non-torsion.

The following proposition is not absolutely trivial but serves as a reality check.

Proposition 5.3.11: ([BT00], Lemma 3.8.)

Let M be a multisection on S. If for all m ∈ Z+, M is not torsion of order m, then M
is a nt-multisection.

Proof. For eachm ∈ Z+ and fiber F̂x, the torsion J(F̂x)[m] is a finite subgroup. Thus, the union
T of all torsion multisections of S is an at most countable union of divisors. The intersection of
M and T is of dimension 0 or 1. If it is of dimension 0, the claim holds. If it is of dimension 1, as
M is irreducible, M ⊂ T . Again, as M is irreducible, M is contained in a torsion multisection,
a contradiction.

Notation 5.3.12

Let p : S ′ → C ′ be an elliptic surface. We will change our notation and write S ′
x for the

fiber above x ∈ C ′.

Now, let p : S → P1 be an elliptic K3 surface over C. Recall the existence and properties of
the Jacobian elliptic surface p̂ : J(S) → P1 (see Section 2.2). The Jacobian elliptic surface of a
K3 surface is a K3 surface. A general fiber J(S)x satisfies

J(S)x ∼= J(Sx) ∼= Pic0(Sx) := {L ∈ Pic(Sx) : deg(L) = 0}.

Let m ∈ Z+. There exists a similar construction which results in an elliptic K3 surface pm :
Jm(S) → P1 such that a general fiber Jm(S)x satisfies

Jm(S)x ∼= Picm(Sx) := {L ∈ Pic(Sx) : deg(L) = m}.

Soon we will see that J0(S) ∼= J(S) and that J1(S) ∼= S. The interested reader is referred to
[Huy16], Chapter 11, Section 4, for more details, although we will soon state the properties we
will use.

Fix m ∈ Z+. Let M be a multisection on S such that dS(M) = m. M is also a divisor
on S (see Remark 5.3.3), and the restriction α := OS(M)|E ∈ Pic(E) to a general fiber E of S
is of degree

deg(α) := deg(OS(M)|E) =M.E = dS(M) = m.
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Therefore, a multisection M of degree m induces a section of pm : Jm(S) → P1.

Figure 5.3 summarises the situation.

{
Multisections M on S
such that dS(M) = m

}
M

↪→ 7→{
Classes of divisors α ∈ Pic(E)

such that deg(α) = m

}
α := OS(M)|E

↕{
Sections of the elliptic K3 surface

pm : Jm(S) → P1

}

Figure 5.3: A multisection induces a section of pm : Jm(S) → P1.

Proposition 5.3.13: (Cf. [BT00].)

Let m, k ∈ Z+
0 . The following are rational maps of algebraic varieties which are regular

in the open subvarieties obtained by removing all singular fibers:

1.
Jm(S)×P1 Jk(S) → Jm+k(S).

2.
ηm : Jk(S) → Jmk(S).

Proof. 1. On smooth fibers Jm(S)x ∼= Picm(Sx) and J
k(S)x ∼= Pick(Sx) add the line bundles

(the degree map is linear).

2. Either embed Jk(S) diagonally in Jk(S)×P1 · · · ×P1 Jk(S) (m times) and apply the map
in Item 1, or on a smooth fiber Jk(S)x ∼= Pick(Sx) multiply the line bundles by m.

Proposition 5.3.14

There exist isomorphisms J(S)
∼−→ J0(S)

∼−→ JdS(S), S
∼−→ J1(S). The isomorphism

J0(S)
∼−→ JdS(S) is not canonical: it depends on a choice of multisection M on S of

degree dS.

Proof. Clearly, there exist biregular maps J(S)
∼−→ J0(S) and S

∼−→ J1(S). Choose a multisec-
tion M as in Proposition 5.3.7. Then, on a smooth fiber,

Pic0(Sx) → PicdS(Sx), L 7→ L ⊗OSx(M).
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These biregular maps extend to isomorphisms.

We will now work toward defining the (algebraic and complex) Tate-Shafarevich group of
an elliptic K3 surface, which parametrises all elliptic K3 surfaces with a fixed Jacobian. We
start with the case of an elliptic curve over a function field.

Definition 5.3.15

Let E be an elliptic curve over C(P1). Then:

1. An E-torsor is a smooth projective curve E ′ of genus g(E ′) = 1 over C(P1) with
a simply transitive additive action of E on E ′.

2. An isomorphism of torsors from E ′ to E ′′ is an isomorphism from E ′ to E ′′ that
is compatible with the action.

3. The Tate-Shafarevich group Sh(E) is the group of E-torsors modulo isomor-
phism of torsors.

Proposition 5.3.16: (Cf. [Huy16], Chapter 11, Section 5.)

There is a natural bijection

Sh(E) ↔ {(E ′, f ′) : f ′ : E
∼−→ J(E ′)}/ ∼,

where (E ′, f ′) and (E ′′, f ′′) are equivalent if there exists an isomorphism from E ′ to E ′′

compatible with the isomorphisms f ′ and f ′′.

Proposition 5.3.17: ([Huy16], Chapter 11, Remark 5.2.)

Let E, Ê be the generic fibers of p : S → P1, p̂ : J(S) → P1, respectively, and let m ∈ Z+
0 .

Then, E and the generic fiber Em of Jm(S) admit a canonical structure of Ê-torsor. In
particular, Ê ∼= J(E) ∼= J(Em). The class [Em] ∈ Sh(E) equals m[E].

Definition 5.3.18

Let J(S)smooth be the set of smooth points of the fibers of p̂ : J(S) → P1, which is a
group scheme on P1. Then:

1. A J(S)smooth-torsor is an elliptic surface p′ : S ′ → P1 with an action of J(S)smooth

on S ′smooth such that the fibers S ′smooth
t are J(S)smooth

t -torsors.

2. The Tate-Shafarevich group Sh(J(S)) is the set of J(S)smooth-torsors modulo
isomorphism of torsors.
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Proposition 5.3.19: ([Huy16], Chapter 11, Corollary 5.5.)

Let Ê be the generic fiber of p : J(S) → P1. Then:

1. There is a natural isomorphism from Sh(Ê) to Sh(J(S)).

2. There is a natural bijection

Sh(J(S)) ↔


S ′elliptic K3 surface,

(S ′, f ′) : f ′ : J(S)
∼−→ J(S ′) compatible with

the group schemes J(S)smooth and J(S ′)smooth

 / ∼,

where (S ′, f ′) and (S ′′, f ′′) are equivalent if there exists an isomorphism from S ′ to
S ′′ compatible with the isomorphisms f ′ and f ′′.

Corollary 5.3.20

The class [Jm(S)] ∈ Sh(J(S)) equals m[S]. In particular, in Sh(J(S)) we have

[J(S)] = [J0(S)] = [JdS(S)] = dS[S] = 0, [S] = [J1(S)],

and {[Jm(S)]}m∈Z+
0
is a cyclic subgroup of order dS.

Proposition 5.3.21: (Cf. [Huy16], Chapter 11, proof of Proposition 5.6, Re-
mark 5.13.)

There exist isomorphisms

Sh(J(S))
∼−→ H1(P1, J(S))

∼−→ (Q/Z)22−ρ(J(S)),

where in the middle term J(S) is viewed as a sheaf of abelian groups on P1. In particular,
Sh(J(S)) is infinitely divisible and has torsion of all orders.

Remark 5.3.22: ([Huy16], Chapter 11, 5.3.)

If p : S ′ → P1 is a complex elliptic K3 surface, it can be shown that S ′ is projective if
and only if dS′ is finite. In particular, if p : S ′ → P1 is Jacobian, it is algebraic. The
analytic Tate-Shafarevich group Shan(J(S)) is defined similarly to the algebraic Tate-
Shafarevich group, but may parametrise non-algebraic elliptic K3 surfaces. Everything
we have discussed so far still holds in the analytic case, except that Shan(J(S))) ∼=
(C/Z)22−ρ(J(S)). We also have that Sh(J(S)) is isomorphic to the torsion subgroup of
Shan(J(S)).
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Notation 5.3.23

Let m ∈ Z+
0 . We will write Jm := Jm(S).

Proposition 5.3.24: ([BT00], Lemma 3.9.)

Let M be a multisection on Jk. Then:

1. If M is torsion of order t, ηm(M) is a torsion multisection of order t/ gcd(t,m) on
Jmk.

2. If M is non-torsion or torsion of order coprime to m, the restriction

ηm|M :M → ηm(M)

is a birational map and dJk(M) = dJkm(ηm(M)).

Proof. Let x ∈ C, and let y1 = ηm(x1), y2 = ηm(x2) ∈ ηm(M) ∩ Jmk
x such that y1 ̸= y2. We

want to find the minimal A ∈ Z+ such that

A(i(y1)− i(y2)) = A(i(ηm(x1))− i(ηm(x2)))

= A(mi(x1)−mi(x2))

= Am(i(x1)− i(x2))

= 0 ∈ J(F̂x).

If M is torsion of order t, t ∈ Z+ is minimal such that

t(i(x1)− i(x2)) = 0 ∈ J(F̂x),

so t|Am. Then, Am = lcm(m, t), and

A =
lcm(m, t)

m
=

t

gcd(t,m)
.

Now, if M is any multisection on Jk, the condition

ηm(x1) = ηm(x) (5.3)

is closed, the map ηm is rational, and M is irreducible, thus it is true either in a dense open
subset of M (Case 1) or in a divisor D of M which contains x1 (Case 2). Clearly, if x = x2,
Condition 5.3 implies

m(i(x1)− i(x2)) = 0,

so t|m. If M is non-torsion, Case 2 holds, and if M is torsion of order coprime to m, Case 2
holds and D = x1. If Case 2 holds, the restriction

ηm|M :M → ηm(M)

is biregular in the open subvariety obtained by removing all intersections of M and ηm(M) a
singular fiber, and D and ηm(D). Then, dJk(M) = dJkm(ηm(M)).
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Corollary 5.3.25: ([BT00], Corollary 3.10.)

Let q ∈ Z+ be prime, let p : S → C be an elliptic fibration such that dS = q, and let M
be a torsion multisection of order t on J1 = S. Then, there exists a surjective map from
M to a torsion multisection of order q on S or to a non-zero torsion multisection of order
q on J(S).

Proof. W. l. o. g., assume q|t, and write t = qkr, gcd(q, r) = 1, k ≥ 1. If k = 1, choose a ∈ Z+

such that ar = 1 mod q. By Proposition 5.3.24, ηar(M) is a torsion multisection of order

t

gcd(t, ar)
=

qr

gcd(qr, ar)
= q

on Jar ∼= J1 ∼= S. If k > 1, ηq
k−1r(M) is a torsion multisection of order

t

gcd(t, qk−1r)
=

qkr

gcd(qkr, qk−1r)
= q

on Jqk−1r ∼= J0 ∼= J(S). As η· acts as integer multiplication on J(S), this multisection is
non-zero.

5.4 Monodromy

Let p : S → C be an elliptic fibration over C.
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p

p−1(U) ⊂ S

U ⊂ C

x′γ(t)

Fx′F γ(t)

x

Fx

δγ(t) ∈ φγ,t([δx′ ])

δx′

δ1 ∈ φγ,1([δx′ ])

γ

Figure 5.4: The local monodromy action of π1(U \ {x}) on H1(Fx′ ,Z).

Restrict the fibration to a sufficiently small neighbourhood U ⊂ C of a singular fiber above
x ∈ U that does not contain any other singular fiber. Let x′ ∈ U \ {x}. Choose a simple loop
γ : [0, 1] → U that starts and ends at x′ (i. e., γ(0) = γ(1) = x′) and winds around x in the
counterclockwise direction.

As Ft, t ∈ U \ x is an elliptic curve (passing to the Jacobian J(S) if necessary), we may
view it as a quotient Ft

∼= C/Lt for some lattice Lt
∼= Z2 of rank 2.

Proposition 5.4.1: (Cf. [Mir89], VI.2.)

Let t ∈ U \ {x}. The first integral homology group H1(Ft,Z) is isomorphic (as a lattice)
to a lattice Lt

∼= Z2 of rank 2 such that Ft
∼= C/Lt, i. e.,

H1(Ft,Z) ∼= Lt.

Proof. (Idea.) There is an isomorphism d from C∗ to H0(Ft,Ω
1
Ft
). The isomorphism from Lt

to H1(Ft,Z) is given by

Lt → H1(Ft,Z), x 7→ γx := {tx : t ∈ [0, 1]} mod Lt,

and the inner products are given by the integrals of dx∗ along γx.
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Proposition 5.4.2: (Cf. [Mir89], VI.2.)

Let t ∈ [0, 1]. The loop γ induces an isomorphism

φγ,t : H1(Fx′ ,Z) ∼−→ H1(Fγ(t),Z).

In particular, γ induces an automorphism φγ,1 ∈ Aut(H1(Fx′ ,Z)) which depends only on
the homotopy class [γ] ∈ π1(U \ {x}) (i. e., it does not depend on the representative γ or
on the point x′). In other words, the group π1(U \{x}) acts on H1(Fx′ ,Z) (see Figure 5.4).

Furthermore, if we fix a basis {e1, e2} of the lattice Lx′ , γ induces a unique auto-
morphism of Lx′ φ̂γ,1 ∈ O(Lx′) ∼= SL±(2,Z) such that φ̂γ,1 ∈ SL(2,Z). If not, γ induces
a conjugacy class in SL(2,Z).

Proof. (Idea.) Let [δx′ ] ∈ H1(F
′
x,Z). We have an inclusion j : H1(F

′
x,Z) ↪−→ H1(F

′
x,C) ∼= C.

j([δx′ ]) varies continuously as t varies along [0, 1] (and γ(t) varies along γ), giving the isomor-
phism φγ,t and the automorphism φγ,1 (i. e., the action of π1(U \ {x}) on H1(Fx′ ,Z)).

Let {e1, e2} be a basis of the lattice Lx′ . By Proposition 5.4.1, if t ∈ [0, 1], the isomorphism of
abelian groups φγ,t induces an isomorphism of lattices

φ̂γ,t : Lx′
∼−→ Lt

which preserves the orientation of the basis {e1, e2}.

Definition 5.4.3

The local monodromy around x is the conjugacy class in SL(2,Z) induced by γ in
Proposition 5.4.2. The local monodromy group around x is the cyclic subgroup Tx
of SL(2,Z) generated by a representative of the local monodromy. In other words, if we
fix a basis {e1, e2} of the lattice Lx′ , Tx is the image of π1(U \ {x}) in SL(2,Z).

We state the following fact without proof.

Proposition 5.4.4: ([Mir89], VI.2.1.)

The local monodromy around x depends only on the type of the singular fiber above x
(i. e., it does not depend on any other information of the elliptic fibration p : S → C!)
The classification is given by Table 5.1.

Let X := {xi}1≤i≤n ∈ C be the bases of the singular fibers, and let x′ ∈ C \ X. The
construction “globalises” naturally by giving an action of π1(C \X) on H1(x

′,Z).

Definition 5.4.5

Fix a basis {e1, e2} of the lattice Lx′ . The global monodromy group Γ = Γ(S) is the
image of π1(C \X) in SL(2,Z).
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Singular fiber type Representative of local monodromy

In A :=

(
1 n
0 1

)
II B :=

(
1 1
−1 0

)
III C :=

(
0 1
−1 0

)
IV D :=

(
0 1
−1 −1

)
I∗n −A
II∗ −D
III∗ −C
IV∗ −B

Table 5.1: Classification of local monodromy around singular fibers ([Mir89], VI.2.1.)

We also state the following facts without proof. For Item 3, the idea is that a generic elliptic
fibration p : S → P1 has only nodal singular fibers. If

a :=

(
1 1
0 1

)
, b :=

(
0 −1
1 0

)

are the standard generators of SL(2,Z), this implies that there are two subsets Xa, Xb of X of
equal cardinality such that X = Xa ⊔Xb and

Txi
=

{
⟨a⟩, xi ∈ Xa,

⟨b⟩, xi ∈ Xb.

In particular, choosing xa ∈ Xa and xb ∈ Xb,

SL(2,Z) = ⟨Txa ∪ Txb
⟩ ⊂ Γ ⊂ SL(2,Z).

For Item 4, the idea is that the global monodromy group is completely determined by an
isolated set of points (the bases of the singular fibers).
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Proposition 5.4.6: ([BT00], Remark 3.13, 3.14, 3.18)

1. Let p̂ : J(S) → C be the Jacobian elliptic fibration associated to S. Then, the
global monodromy group Γ(S) of S is isomorphic to the local monodromy global
monodromy group Γ(J(S)) of J(S).

2. If the elliptic fibration p : S → C is locally isotrivial (e. g., if it is isotrivial, see
Definition 2.3.9), the global monodromy group Γ is finite. If it is not isotrivial, the
index [SL(2,Z) : Γ] is finite.

3. The global monodromy group Γ(S) of a generic elliptic fibration p : S → P1 is equal
to SL(2,Z).

4. Let
F (S, T ) : S → T

be a family of elliptic fibrations such that T is an algebraic variety. Then, there
exists an algebraic subvariety (generally of high codimension) T ′ of T such that,
for all t1, t2 ∈ T \ T ′, Γ(St1) = Γ(St2).

A Jacobian elliptic fibration p : S → P1 is given in Weierstrass form

y2 = x3 + A(t)x+B(t), A,B ∈ O(P1).

In particular, the degrees of A and B satisfy

deg(A) = 4r, deg(B) = 6r, r ∈ Z+,

and the j-map is

j : P1 → P1, t 7→ 4A(t)3

4A(t)3 + 27B(t)2
.

This discussion implies the following.

Remark 5.4.7: ([BT00], Remark 3.15.)

Let F be the family of all Jacobian elliptic fibrations p : S → P1. Then, there exist
families Fr, r ∈ Z+ such that

F =
∞⊔
r=1

Fr.

If p : S → P1 belongs to the family Fr, the degree of the j-map is bounded

0 ≤ deg(j) ≤ 12r.
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Proposition 5.4.8: ([BT00], Proposition 3.16.)

If the elliptic fibration p : S → C is not isotrivial, the index [SL(2,Z) : Γ] is bounded

[SL(2,Z) : Γ] ≤ 2 deg(j).

Proof. (Idea.) The j-map is defined identical for S and J(S), so we may assume p : S → C is
Jacobian. The j-map j : C → P1 restricts to the smooth fibers j∗ : C∗ → (P1)∗, and it can be
shown that it induces a map to a quotient of the upper half-plane j∗H : C∗ → Γ\H (a smooth
fiber corresponds to a point in Γ\H).

Then, if rΓ : Γ\H → SL(2,Z)\H is the restriction and ĵ : SL(2,Z)\H → P1 is the j-invariant,
we have

j∗ = ĵ ◦ rΓ ◦ j∗H .

Therefore, the degrees satisfy

deg(j) ≥ deg(j∗) ≥ deg(rΓ),

and it can be shown that

deg(rΓ) =

{
[SL(2,Z) : Γ], if ± I2 ⊂ Γ,
[SL(2,Z):Γ]

2
, if not.

Corollary 5.4.9: ([BT00], Corollary 3.17.)

Let F be a family of non-isotrivial elliptic fibrations p : S → C, and suppose there exists
A > 0 such that for all p : S → C in F

0 ≤ deg(j) ≤ A.

Then, the set
{Γ(S) : p : S → C ∈ F}/ isomorphism

is finite.

Proof. (Idea.) By Proposition 5.4.8, if there exists such a constant A > 0, for all p : S → C in
F ,

[SL(2,Z) : Γ(S)] ≤ 2A.

In the case of SL(2,Z), this implies an upper bound for the number of possible subgroups
Γ(S).
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Corollary 5.4.10: ([BT00], Corollary 3.17.)

If p : S → P1 belongs to the family Fr in Remark 5.4.7, the index [SL(2,Z) : Γ] is
bounded

[SL(2,Z) : Γ] ≤ 24r.

Proof. This follows directly from Remark 5.4.7 and Proposition 5.4.8.

Finally, we give the following fact without proof.

Proposition 5.4.11: ([BT00], Example 3.19.)

There exists a subvariety F ′
r of Fr in Remark 5.4.7 such that

dim(F ′
r) ≤

dim(Fr)

2
+ 1

such that, if p : S → P1 belongs to the family Fr,

Γ(S) =

{
SL(2,Z), if S belongs to Fr \ F ′

r,

Γ(S) ⫋ SL(2,Z), if S belongs to F ′
r.

5.5 Torsion multisections and genus estimates

Let Γ be a subgroup of SL(2,Z) of finite index [SL(2,Z) : Γ], and let p : S → P1 be a non-
isotrivial elliptic fibration over C with global monodromy group isomorphic to Γ.

We state the following correspondence without proof.

Lemma 5.5.1: (Cf. [BT00].)

If p : S → P1 is Jacobian and m ∈ Z+, there is a bijective correspondence

{
Multisections M of order m on S

}
↔


For each x ∈ P1,

an orbit of the action of Γ on y ∈ J(Fx)[m]
such that y ̸∈ J(Fx)[n] for all n ≤ m.

 ,

M 7→ {M ∩ Fx}x∈P1 .

We also state the following group-theoretic fact without proof (many thanks are due to
Prof. Sebastián Herrero, who took the time to convince the author of this fact).
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Lemma 5.5.2

Let L ∼= Z2 be a lattice of rank 2, and let T = C/L be a complex torus (an elliptic curve).
SL(2,Z) acts on C, thus also on T . Let m ∈ Z+, and let x ∈ T [m] be an m-torsion point
such that x ̸∈ T [n] for all n ≤ m. Then, the orbit of the action of SL(2,Z) on x has
cardinality equal to

m2
∏

p prime, p|m

(1− 1/p2).

In particular, if Γ is a subgroup of SL(2,Z) of finite index [SL(2,Z) : Γ], the orbit of the
action of Γ on x has cardinality equal to

m2

[SL(2,Z) : Γ]
∏

p prime, p|m

(1− 1/p2).

Proposition 5.5.3: ([BT00], Proposition 3.20.)

If p : S → P1 is Jacobian and M is a torsion multisection of order m on S, the degree
dS(M) is bounded:

dS(M) >
6m2

π2[SL(2,Z) : Γ]
.

Proof. Note that, if x ∈ P1,
dS(M) ≥ #M ∩ Fx.

By Lemma 5.5.1, it is sufficient to give a lower bound on the cardinality of an orbit of the
action of Γ on J(Fx)[m] satisfying an additional condition. As p : S → P1 is Jacobian, the fiber
Fx is an elliptic curve (isomorphic to its Jacobian), so by Lemma 5.5.2, if y ∈ J(Fx)[m] is such
that y ̸∈ J(Fx)[n] for all n ≤ m, the orbit of the action of Γ on y has cardinality

m2

[SL(2,Z) : Γ]
∏

p prime, p|m

(1− 1/p2).

Recall that
1/ζ(s) =

∏
p prime

(1− p−s)

and ζ(2) = π2/6, where ζ(·) is the Riemann zeta function. As adding primes to the product
makes it smaller, the bound holds.

Proposition 5.5.4: ([BT00], Proposition 3.21.)

There exists a constant m0(Γ) (depending only on Γ and not p : S → P1) such that, if
p : S → C is Jacobian and has at least 4 singular fibers, m ∈ Z+ is a positive integer
such that m > m0(Γ), and M is a torsion multisection of order m on S, the genus of M
is bounded:

g(M) ≥ 2.
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Proof. (Idea.) By the Riemann-Hurwitz formula,

2g(M)− 2 = deg(f)(2g(P1)− 2) +
∑
x∈M

ex,

where ex is the ramification index at x ∈M . This may be rewritten as (see e. g. [Has03], 9.1)

2g(M)− 2 = deg(f)(2g(P1)− 2) +
∑
x∈P1

(deg(f)− orbits(x)),

where orbits(x) is the number of orbits of the local monodromy group Tx ⊂ SL(2,Z) around x
on m-torsion points of nearby fibers. Note that g(P1) = 0, so

2g(M)− 2 = deg(f)

(
−2 +

∑
x∈P1

(
1− orbits(x)

deg(f)

))
. (5.4)

As deg(f) = dS(M) = #{M∩Fx}, x ∈ P1, by Lemma 5.5.1 and Proposition 5.5.3, it is sufficient
that ∑

x∈P1

(
1− orbits(x)

deg(f)

)
> 2,

as m tends to infinity. It can be shown that (cf. [Has03], Table 1):

1. If Fx is a smooth fiber, then the term is zero.

2. If Fx is a multiplicative fiber, then orbits(x) ≈ 2m.

3. If Fx is an additive fiber, then orbits(x) ≈ g(x), where g(x) ≤ 1/2(m2 + c), c > 0.

Now, by Proposition 5.5.3 again, deg(f) = dS(M) > cΓm
2, 0 < cΓ < 1, so 1/ deg(f) <

c′Γ/m
2, c′Γ > 1. This is not enough! However, by doing more local calculations, it can be shown

that:

1. If Fx is a multiplicative fiber, then orbits(x)/ deg(f)
m→∞−−−→ 0, so the term is 1.

2. If Fx is an additive fiber, then orbits(x)/ deg(f)
m→∞−−−→ c ≤ 1/2, so the term is ≥ 1/2.

As, by hypothesis, p : S → P1 has at least 4 singular fibers, this is enough.

Now, to obtain a similar result for the non-Jacobian case, recall our discussion about the
Tate-Shafarevich group of S (see Section 5.3), and consider the following construction: Let M
be a torsion multisection on S, and define the elliptic surface pM : M → (P1)∗ on smooth fibers
by

Mt := {x ∈ Ft : i(x)− i(M |Ft) ⊂ J(F̂t)[dS]} = i(M |Ft) + J(F̂t)[dS] ∼= i(M |Ft) + (Z/dSZ)2.

This elliptic surface is a J(S)∗-torsor, where p̂∗ : J(S)∗ → (P1)∗ is the restriction to the
smooth fibers. Therefore, it defines a class [M] ∈ Sh(J(S)∗). There is a natural inclusion
Sh(J(S)∗) ↪−→ Sh(J(S)), and it can be shown that the degree dS|dM.
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The global monodromy action of π1((P1)∗) on a smooth fiber Mt is a morphism

A : π1((P1)∗) → Aut(Mt) ∼= ASL(2,Z/dSZ).

The linear part of A factors as

Alinear : π1((P1)∗) → Γ ⊂ SL(2,Z) → SL(2,Z/dSZ).

It can be shown that the connected components of M are in bijective correspondence with
orbits of the action of π1((P1)∗) on M. By (a similar lemma to) Lemma 5.5.1, these are in
bijective correspondence with torsion multisectionsM ′ on M, and thusM defines many torsion
multisections on S (one of which is M).

Lemma 5.5.5: ([BT00], similar to Lemma 3.23.)

If the natural projection Γ → SL(2,Z/pZ) is surjective, p : S → P1 is not Jacobian,
q ∈ Z+ is a prime such that dS = q, and M is a torsion multisection of order q, for a
general x ∈ P1, the cardinality

#M ∩ Fx > q2.

Proof. (Idea.) If A = Alinear, then, for a general fiber, the set i(M |Ft) is a singleton, and M
is a section, a contradiction. Then, Alinear(π1((P1)∗)) ̸∼= SL(2,Z/dSZ), and it can be shown
that A(π1((P1)∗)) contains the group of translations by (Z/qZ)2, thus the orbit of the action of
π1((P1)∗) on Mt corresponding to M |Ft contains at least q

2 points.

Proposition 5.5.6: ([BT00], similar to Proposition 3.22.)

There exists a constant q0(Γ) (depending only on Γ and not p : S → P1) such that, if
p : S → P1 is not Jacobian and has at least 4 singular fibers, q ∈ Z+ is a prime such that
q > q0(Γ) and dS = q, and M is a torsion multisection of order q on S, the genus of the
normalisation M̂ of M is bounded:

g(M̂) ≥ 2.

Proof. (Idea.) It can be shown that the minimal index of a proper subgroup of SL(2,Z/qZ)
strictly increases with q. Then, the natural projection Γ → SL(2,Z/pZ) is surjective, and, by
Lemma 5.5.5 and Equation 5.4, the conclusion follows.

Proposition 5.5.7: ([BT00], Proposition 3.24.)

There exists a constant q0(Γ) (depending only on Γ and not p : S → P1) such that, if
p : S → P1 is not Jacobian and has at least 4 singular fibers, q ∈ Z+ is a prime such that
q > q0(Γ) and dS = q, and M is an arbitrary torsion multisection on S, the genus of M
is bounded:

g(M) ≥ 2.
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Proof. By Proposition 5.3.25, there exists a surjective map from M to a torsion multisection
of order q on S or to a non-zero torsion multisection of order q on J(S). The claim follows by
Proposition 5.5.6.

Proposition 5.5.8: ([BT00], Proposition 3.25.)

If p : S → P1 is not Jacobian and has at least 4 singular fibers, q ∈ Z+ is a prime such
that q > q0(Γ) and q ̸ |dS, and p′ : S ′ → P1 is an elliptic surface representing the class
[S]/q ∈ H1(P1, J(S)), there aren’t any rational or elliptic torsion multisections on S ′.

Proof. Note that there exists an elliptic surface representing the class [S]/q ∈ H1(P1, J(S)) by
5.3.21.

By Corollary 5.3.8, as the order of [S] in H1(P1, J(S)) is dS, the order of [S]/q in H
1(P1, J(S))

is qdS = dS′ . Define J ′m,m ∈ Z+
0 such that J ′0 = J(S ′), J ′1 = S ′, η′m : J ′1 → J ′m as in Section

5.3. Let S ′′ := J ′dS . As S ′′ represents the class dS[S]/q, its degree dS′′ is equal to q. S ′′ is also
not Jacobian and has the same singular fibers as S. Let M be a torsion multisection on S ′. By
Proposition 5.3.24, η′dS(M) is a torsion multisection on S ′′. By Proposition 5.5.7,

g(η′dS(M)) ≥ 2.

By (the proof of) Proposition 5.3.24, the restriction

η′m|M :M → η′m(M)

is a birational map (otherwise Condition 5.3 implies that η′m maps M to an algebraic 0-cycle
on Jm, a contradiction). As the genus is a birational invariant, the conclusion follows.

Remark 5.5.9: (Cf. [Has03].)

In [Has03], Hassett notes that the original version of Proposition 5.5.8 in [BT00] is not
true if the elliptic surface is isotrivial, and that “the Kummer surface associated to a
product of general elliptic curves is a counterexample”. Hassett then proves the results
in [BT00] by three different approaches, the first two of which being a modification of
the approach in [BT00].

Theorem 5.5.10: ([BT00], Corollary 3.28.)

If S is an algebraic K3 surface such that ρ(S) ≤ 19, there are infinitely many rational
nt-multisections on S.

Proof. By 3.3.9, p : S → P1 has at least 4 singular fibers. Let p′ : S ′ → P1 be an elliptic
fibration such that S ′ is an algebraic K3 surface, S ′ is not Jacobian (if S is not Jacobian,
choose S ′ = S), and J(S ′) = J(S). S ′ has the same singular fibers as S. Choose a sequence
{qn}n∈N such that, for all n ∈ N, qn > q0(Γ), qn ̸ |dS′ , and p′n : S ′

n → P1 is an elliptic fibration
representing the class [S ′]/qn. By Proposition 5.5.8, there aren’t any rational or elliptic torsion
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multisections on S ′
n. LetMn be an irreducible rational curve representing a horizontal primitive

generator of Λeff(S
′
n) (see Theorem 5.2.6). Clearly, Mn is a multisection, and it must be non-

torsion. Define Jm
n ,m ∈ Z+

0 such that J0
n = J(S ′

n), J
1
n = S ′

n, η
m
n : J1

n → Jm
n as in Section

5.3. By Proposition 5.3.24, ηqnn (Mn) is a rational nt-multisection on S ′ of degree dS′
n
(Mn). By

Proposition 5.3.5, dS′
n
= qndS′|dS′

n
(Mn), thus infinitely many different multisections Mn map

to different multisections ηqnn (Mn). If S is Jacobian, the same argument allows us to map
multisections on S ′ to multisections on S. Throughout the argument, we were allowed to say
that the rational multisections actually are immersed rational curves by Section 5.1 and the
fact that all the elliptic surfaces parametrised by the Tate-Shafarevich group are deformation
equivalent (cf. [Huy16]).

5.6 Density

5.6.1 Automorphisms

Let S be an algebraic K3 surface over a number field K.

The following lemma (which we state without proof) is a consequence of the strong Torelli
theorem for K3 surfaces.

Lemma 5.6.1: ([Has03], Lemma 6.8.)

There exists a finite field extension K ′ of K such that all automorphisms of the complex
manifold S(C) are realised as algebraic morphisms of SK′ .

Lemma 5.6.2: ([BT00], Lemma 4.9.)

If Aut(S) is infinite, then Λeff(S) is infinitely generated.

Proof. (Idea.) Let ΛK3 be the K3 lattice (see Important examples 1.1.15). It can be shown that
a subgroup G of Aut(S) of finite index [Aut(S) : G] is isomorphic to the subgroup of O(ΛK3)
that fixes Λeff(S). In particular, if a full set of generators of Λeff(S) is finite, then G is finite
and Aut(S) is finite, a contradiction.

Lemma 5.6.3: (Cf. [BT00], proof of Theorem 4.10.)

If Aut(S) is infinite, then there exists a generator x of Λeff(S) such that the orbit of the
action of Aut(S) on x is infinite.

Proof. (Idea.) O(ΛK3) embeds into SL(22,Z3). The subgroup of SL(22,Z3) consisting of ma-
trices congruent to the identity matrix mod 3 is normal and all of its elements are of infinite
order. Thus, G (see proof of Lemma 5.6.2) has a subgroup of finite index such that all of its
elements are of infinite order. Let g ∈ G. There exists a generator x of Λeff(S) such that the
orbit of the action of g on x is infinite.
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Theorem 5.6.4: ([BT00], Theorem 4.10.)

If Aut(S) is infinite, then K-rational points on S are potentially dense.

Proof. Let x be a generator of Λeff(S) as in Lemma 5.6.3. By Theorem 5.2.6, the class x is
represented by an irreducible rational curve xrational. As the orbit of xrational is infinite, it is not
contained in any divisor of S. The result follows by Corollary 4.1.10 and Lemma 5.6.1.

Before moving on to the subsection which explains the main consequence of the constructions
in this chapter, we state a few more useful results about automorphisms on K3 surfaces.

Definition 5.6.5

S is singular if ρ(S) = 20, i. e., if the Picard number of S is maximal (cf. char(K) = 0).

The following is a result by Shioda-Inose.

Proposition 5.6.6: ([SS10], Lemma 13.2.)

If S is singular, then Aut(S) is infinite.

Proposition 5.6.7: ([BT00], Corollary 4.12.)

If ρ(S) ≥ 2 and Pic(S) does not have any classes of square zero or square −2, then
Aut(S) is infinite.

Clearly, in either of these cases, we may apply Theorem 5.6.4 to conclude that K-rational
points are potentially dense.

5.6.2 Multisections

Let p : S → P1 be an elliptic fibration over a number field K, let p̂ : J(S) → C be the Jacobian
elliptic fibration associated to S, and let i : S → J(S) be the natural inclusion.

Theorem 5.6.8: ([BT00], Proposition 4.1.)

If there exists a nt-multisection M on S such that K-rational points on M are dense, the
set

{x ∈ p̂(i(M)(K)) : #Fx(K) <∞}

is finite. In other words, K-rational points on S are dense.

Proof. (Cf. [Has03], proof of Proposition 4.13). The base change J(S)M = J(S)×C M admits
an elliptic fibration pM : J(S)M →M with a section

sM :M → J(S)M , x 7→ (x, x).
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As M is non-torsion and K-rational points on M are dense, this is true for sM(M) and n ·
sM(M), n ∈ Z (here, the multiplication may be done in the generic fiber of J(S)M , see Remark
2.4.1). This implies that Z · sM(M) is dense in J(S)M , as it is not contained in any divisor.
Therefore, K-rational points on J(S)M are dense. As J(S)M dominates J(S) and S, the result
follows by (the proof of) Proposition 4.1.9. An alternative proof uses Merel’s theorem (cf.
[BT00], proof of Proposition 4.1).

Theorem 5.6.9: ([BT00], Corollary 4.2.)

If S is K3, then K-rational points on S are potentially dense.

Proof. If ρ(S) ≤ 19, by Theorem 5.5.10, there exist infinitely many rational nt-multisections
on S. Therefore, the theorem follows as a corollary of Theorem 5.6.8 and Corollary 4.1.10.

If ρ(S) = 20, by Proposition 5.6.6, the group of automorphisms of S Aut(S) is infinite, therefore
the theorem follows by Theorem 5.6.4.

Remark 5.6.10: (Cf. [BT00], Proposition 4.4.)

There are similar approaches to potential density of K-rational points on elliptic surfaces
also exhibited by Bogomolov and Tschinkel in Density of rational points on Enriques
surfaces [BT98]. They consider saliently ramified multisections, which are multisections
that intersect each smooth fiber Fx with multiplicity greater than or equal to two. They
prove that saliently ramified multisections are non-torsion, which allows them to apply
Theorem 5.6.8 if the multisection is rational or elliptic. They conclude that, if the surface
admits two non-isomorphic elliptic fibrations over P1 (e. g., if the surface is K3 and admits
two non-isomorphic elliptic fibrations), then a general fiber of one fibration is a saliently
ramified multisection of the other, thus K-rational points are potentially dense.

5.6.3 Consequences

We start by giving specific examples.
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Examples 5.6.11

1. ([BT00], Example 4.8.) There exists a K3 surface S with Néron-Severi lattice given
by the Gram matrix 

2 −1 −1 −1
−1 −2 0 0
−1 0 −2 0
−1 0 0 −2

 .

As there are not any elements of square zero, by Proposition 3.3.3, S does not
admit an elliptic fibration. Furthermore, as there are elements of square −2 and
ρ(S) ≥ 2, by Proposition 5.6.7, Aut(S) is not necessarily infinite. Therefore, we
cannot apply any of our theorems about potential density of K-rational points.

2. The surfaces in Item 1 and 2 in Examples 3.3.2 admit elliptic fibrations by Corol-
lary 3.3.5. The surfaces in Item 3 and 4 admit elliptic fibrations by construction.
Therefore, K-rational points are potentially dense by Theorem 5.6.9.

3. ([Has03], Example 6.11.) Let p11 and p22 be bihomogeneous forms of type (1, 1)
and (2, 2) on P2 × P2, respectively. The complete intersection

S = {(x, y) ∈ P2 × P2 : p11(x, y) = p22(x, y) = 0}

is a K3 surface. Its Néron-Severi lattice is generated by the polarisations induced
by the P2 factors, and is given by the Gram matrix(

2 4
4 2

)
.

The projections S → P2 are double covers, and the free subgroup of Aut(S) gen-
erated by the two induced involutions is non-abelian and infinite. Alternatively, as
there are not any elements of square zero or −2 and ρ(S) ≥ 2, by Proposition 5.6.7,
Aut(S) is infinite. Therefore, K-rational points are potentially dense by Theorem
5.6.4.

4. ([Has03], Example 6.11.) Let n ≥ 4. There exists a K3 surface with Néron-Severi
lattice given by the Gram matrix (

2 n
n 2

)
.

Similarly, K-rational points are potentially dense by Theorem 5.6.4.

Finally, we re-state and sketch the proof of Corollary 4.1.24, which gives the general clas-
sification of potential density of K-rational points on K3 surfaces as per the results in this
thesis.
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Corollary 5.6.12: (Cf. [BT00].)

If X is a K3 surface, the following conditions imply that X(K) is potentially dense:

1. ρ(XC) = 1, and X is a double cover of P2 ramified in a singular curve of degree six.

2. ρ(XC) = 2 and X does not contain a −2-curve (i. e., a curve of self-intersection
equal to 2).

3. ρ(XC) = 3, except possibly for 6 isomorphism classes of lattices Pic(XC).

4. ρ(XC) = 4, except possibly for 2 isomorphism classes of lattices Pic(XC).

5. ρ(XC) ≥ 5.

Proof. (Idea.)

1. Cf. [BT00].

2. If X does not contain a −2-curve, then, by Proposition 3.3.3 and 5.6.7, either X admits
an elliptic fibration or Aut(X) is infinite.

3. This follows by Nikulin’s classification of Néron-Severi lattices of algebraic K3 surfaces
[Nik87].

4. Idem. In particular, 17 lattices contain classes of square zero or −2, and 15 of these
contain classes of square zero, thus admit elliptic fibrations.

5. This follows by Corollary 3.3.5, as then X admits an elliptic fibration.
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[SS10] Matthias Schütt and Tetsuji Shioda. Elliptic surfaces. In Algebraic geometry
in East Asia—Seoul 2008, volume 60 of Adv. Stud. Pure Math., pages 51–160.
Math. Soc. Japan, Tokyo, 2010.

[Tat75] J. Tate. Algorithm for determining the type of a singular fiber in an elliptic
pencil. In Bryan J. Birch and Willem Kuyk, editors, Modular Functions of One
Variable IV, volume 476, pages 33–52. Springer Berlin Heidelberg, 1975. Series
Title: Lecture Notes in Mathematics.

[Vak00] Ravi Vakil. MIT Mathematics 18.727, Lecture Notes: Deformation Theory and
Moduli Spaces, Lecture 12, 2000. URL: https://math.stanford.edu/~vakil/
727/index.html. Last visited on 1 October 2023.

https://gauss.math.yale.edu/~il282/Sveta_S16.pdf
http://www.math.sci.hiroshima-u.ac.jp/shimada/slides/2014SepHiroshima/abstract.pdf
http://www.math.sci.hiroshima-u.ac.jp/shimada/slides/2014SepHiroshima/abstract.pdf
https://math.stanford.edu/~vakil/727/index.html
https://math.stanford.edu/~vakil/727/index.html

	Acknowledgements
	Introduction
	Preliminaries
	Lattices
	Surfaces
	Hodge theory

	Elliptic surfaces
	First definitions, properties, and examples
	Jacobian elliptic surfaces
	Classification of singular fibers
	Mordell-Weil group
	Invariants

	K3 surfaces
	First definitions, properties, and examples
	Deformations and Torelli theorem
	Elliptic K3 surfaces

	Integral and rational points
	Rational points
	First definitions, properties, and examples
	Some known results

	Integral points

	Rational points on elliptic K3 surfaces
	A deformation argument
	A representation theorem for effective divisors
	Multisections and Tate-Shafarevich group
	Monodromy
	Torsion multisections and genus estimates
	Density
	Automorphisms
	Multisections
	Consequences


	References

