Geometría Algebraica Clase 11

Pedro Montero

Universidad Técnica Federico Santa María Valparaíso, Chile

4 de Septiembre de 2023

§2.11 Dimensión y morfis<u>mos</u>

FINITOS

Going-up y Going-<u>Down</u>

Figure: A. GROTHENDIECK y M. ATIYAH, ambos Medalla Fields en 1966.

Going-up y Going-down

Recordemos que Emmy Noether prueba que para toda $X\subseteq \mathbb{A}^n$ variedad algebraica afín existe un morfismo finito sobreyectivo

$$f: X \twoheadrightarrow \mathbb{A}^d$$
 para cierto $d \in \mathbb{N}$.

Más aún, si $X \nsubseteq \mathbb{A}^n$ cerrado propio, d < n. También necesitaremos:

Lema de Going-up y Going-down (Cohen-Seidenberg, 1946)

Sea $f: X \to Y$ morfismo finito sobreyectivo. Entonces,

- $\forall Y' \subseteq Y$ cerrado irred., $\exists X' \subseteq X$ cerrado irred. tal que f(X') = Y'.
- ② Si $X', X'' \subseteq X$ cerrados irreducibles **distintos** con f(X') = f(X''), entonces X' y X'' no son comparables (i.e., $X' \notin X''$ y $X'' \notin X'$).

Prueba: En (1), escribimos $f^{-1}(Y') = X_1 \cup \cdots \cup X_m$ con X_i cerrado irred. Luego, $Y' = f(X_1) \cup \cdots \cup f(X_m)$ con $f(X_i)$ cerrado pues f finito. Como Y' irreducible, $Y' = f(X_i)$ para cierto $X_i =: X'$.

En (2), supongamos que $X' \subseteq X''$ y sea $x \in X'' \setminus X'$.

Going-up y Going-down

Sea $x \in U \subseteq X''$ abierto afín, y así $X' \cap U \subsetneq X'' \cap U$ cerrado propio de $X''_U \coloneqq X'' \cap U$, i.e., $\exists u \in \mathscr{O}(X''_U)$ con $u(x) \neq 0$ y $u \equiv 0$ en $X'_U \coloneqq X' \cap U$.

Sea V = f(U), que podemos asumir afín pues f es un morfismo finito, y así $f: U \to V$ finito que cumple $f(X') \cap V \stackrel{\mathsf{def}}{=} f(X'_U) = f(X''_U)$ por hipótesis.

Como $u \in \mathcal{O}(X_U'')$ es entero sobre $\mathcal{O}(W)$, con $W \coloneqq f(X_U'')$, hay una relación

$$u^d + f^*(v_1)u^{d-1} + \dots + f^*(v_d) = 0 \text{ en } \mathscr{O}(X'' \cap U), \qquad (\star)$$

con $v_i \in \mathcal{O}(W)$ y donde asumimos $d \in \mathbb{N}$ minimal. Como $u \neq 0$ en X_U'' entonces $f^*(v_d) \stackrel{\mathsf{def}}{=} v_d \circ f \neq 0$ (pues d minimal).

Como $u \equiv 0$ en X_U' entonces (\star) implica que $f^*(v_d) = 0$ en X_U' , y luego $f^*(v_d) = 0$ en X_U'' pues f(X') = f(X''), una contradicción.

DIMENSIÓN Y MORFISMOS FINITOS

Si $f: X \to Y$ morfismo finito sobreyectivo entre variedades **irreducibles**:

- \bullet dim(X) = dim(Y), y además
- \circ dim_{Krull}(X) = dim_{Krull}(Y).

Prueba: En (1): asumimos X e Y afines, pues la dimensión es invariante birracional. Luego, $\mathscr{O}(X)$ entero sobre $\mathscr{O}(Y)$ via $f^*:\mathscr{O}(Y)\longrightarrow\mathscr{O}(X)$, de donde k(X) extensión algebraica de k(Y). En particular,

$$\operatorname{tr.deg}_k(k(X)) = \operatorname{tr.deg}_k(k(Y))$$
, i.e., $\dim(X) = \dim(Y)$.

En (2): si $X_0 \nsubseteq \cdots \nsubseteq X_d$ cerrados irreducibles en X, consideramos $Y_0 \subseteq \cdots \subseteq Y_d$ en Y, donde $Y_i \coloneqq f(X_i)$ irreducible y cerrado pues f morfismo finito. Por Cohen-Seidenberg: $Y_i \neq Y_{i+1}$ y luego $\dim_{\mathrm{Krull}}(Y) \ge \dim_{\mathrm{Krull}}(X)$.

Si $Y_0 \subsetneq \cdots \subsetneq Y_d$ cerrados irreducibles en Y, Cohen-Seidenberg permite hallar $X_0 \subsetneq \cdots \subsetneq X_d$ cerrados irreducibles en $X \colon \dim_{\mathrm{Krull}}(X) \ge \dim_{\mathrm{Krull}}(Y)$. \square

COMPARANDO DIMENSIONES

Teorema

Sea X variedad algebraica irreducible. Entonces, $\dim(X) = \dim_{\mathrm{Krull}}(X)$.

Prueba: Podemos asumir $X \subseteq \mathbb{A}^n$, y procedemos por inducción en n:

Si $X \nsubseteq \mathbb{A}^n$ cerrado propio $\exists f: X \twoheadrightarrow \mathbb{A}^m$ morfismo finito sobreyectivo con m < n (normalización de Noether). Luego, mezclando el resultado anterior y la hipótesis de inducción obtenemos:

$$\dim_{\mathrm{Krull}}(X) = \dim_{\mathrm{Krull}}(\mathbb{A}^m) = \dim(\mathbb{A}^m) = \dim(X).$$

Si $X=\mathbb{A}^n$ entonces $\dim(\mathbb{A}^n)=n$ y $\dim_{\mathrm{Krull}}(\mathbb{A}^n)\geq n$. Sean $X_0 \subsetneq \cdots \subsetneq X_d=\mathbb{A}^n$ cerrados irreducibles y notar que $\dim_{\mathrm{Krull}}(X_{d-1})\geq d-1$. Como $X_{d-1} \subsetneq \mathbb{A}^n$ existe $f:X_{d-1} \twoheadrightarrow \mathbb{A}^m$ morfismo finito sobreyectivo con m < n.

Luego, $d-1 \leq \dim_{\mathrm{Krull}}(X_{d-1}) = \dim_{\mathrm{Krull}}(\mathbb{A}^m) = m \leq n-1$, de donde deducimos que $d \leq n$, y así $\dim_{\mathrm{Krull}}(\mathbb{A}^n) = n$.

Ejercicio útil: Probar que si $Z \nsubseteq X$ cerrado propio, $\dim(Z) < \dim(X)$.

KRULL HAUPTIDEALSATZ

Mencionemos el siguiente resultado fundamental de Álgebra Conmutativa:

Hecho (Teorema del ideal principal de Krull, 1928)

Si X variedad algebraica irreducible afín y $f \in \mathcal{O}(X) \setminus \{0\}$ no-invertible, toda componente irreducible de $V(f) \subseteq X$ es de dimensión $\dim(X) - 1$.

Terminología: Sea X una variedad algebraica irreducible de $\dim(X) = n$. Decimos que X es una

- curva si n = 1,
- **2** superficie si n = 2,
- **3** threefold si n = 3,
- fourfold si n = 4, etc.

Hablamos de *curvas algebraicas*, *superficies algebraicas*, *threefolds algebraicos*, etc. para referirse a una variedad algebraica de dichas dimensiones.

§2.12 Dimensión de morfismos y

APLICACIONES

Número de ecuaciones y Dimensión

Sea $X \subseteq \mathbb{P}^N$ variedad quasi-proyectiva irreducible de $\dim(X) = n$, y sean $f_1, \ldots, f_r \in k[X_0, \ldots, X_n]$ polinomios homogéneos no-constantes. Si

$$Y \coloneqq X \cap V(f_1, \ldots, f_r) \subseteq X,$$

cada componente irreducible Z de Y es de $\dim(Z) \ge n - r$.

Prueba (inducción en r): El caso r=1 sigue por Teorema de Krull, y luego asumimos $r \geq 2$: Notar que $Z \subseteq X \cap V(f_1, \ldots, f_{r-1})$ y luego $Z \subseteq W$ para cierta $W \subseteq X \cap V(f_1, \ldots, f_{r-1})$ componente irreducible.

Por inducción, $\dim(W) \ge n - r + 1$. Si $f_r \equiv 0$ en W, $\dim(Y) = \dim(W) \ge n - r + 1 \ge n - r$. Si $f_r \not\equiv 0$ en W, considerar $x \in Z$ y $x \in U \subseteq W$ abierto afín:

Como Z y W irreducibles, U es denso, y así $\dim(Z) = \dim(Z \cap U)$ y $\dim(W) = \dim(U)$. Sea $g_r \coloneqq f_r|_{U} \neq 0$, donde $Z \cap U$ es una componente irreducible de $V(g_r)$. El Teorema de Krull implica que

$$\dim(Z \cap U) = \dim(U) - 1 \ge (n - r + 1) - 1 = n - r \quad \Box$$

Intersecciones completas

La desigualdad $\dim(Y) \ge n-r$ puede ser **estrícta**: la cúbica torcida $C = \nu_3(\mathbb{P}^1) \subseteq \mathbb{P}^3$ está dada por 3 ecuaciones y $\dim(C) = 1 > 3 - 3 = 0$.

Definición (codimensión, intersecciones completas)

Sea X variedad algebraica de dimensión pura n, y $Y \subseteq X$ una subvariedad cerrada. La **codimensión** de Y en X es

$$\operatorname{codim}_X(Y) := \dim(X) - \dim(Y) = n - \dim(Y).$$

Una variedad (quasi-)proyectiva de dimensión n en \mathbb{P}^N es una **intersección completa** si puede ser definida por c = N - n ecuaciones.

Conjetura (Hartshorne, 1974): abierta incluso si N = n + 2

Sea $X \subseteq \mathbb{P}^N$ variedad proyectiva **suave** de dimensión n tal que 3n > 2N. Entonces, X es una intersección completa.

EJEMPLOS

Sean X e Y variedades irreducibles de $\dim(X) = n$ y $\dim(Y) = m$.

• $\dim(X \times Y) = n + m$: Basta asumir X e Y son afines y considerar (normalización de Noether) morfismos sobreyectivos finitos

$$f: X \twoheadrightarrow \mathbb{A}^n \text{ y } g: Y \twoheadrightarrow \mathbb{A}^m, \text{ donde}$$

 $f \times g : X \times Y \twoheadrightarrow \mathbb{A}^{n+m}$ sobreyectivo finito, i.e., $\dim(X \times Y) = n + m$.

- ② Si $X = V(I) \subseteq \mathbb{P}^n$ variedad alg. proyectiva y $C(X) \coloneqq V(I) \subseteq \mathbb{A}^{n+1}$ el cono afín de X, $\dim(C(X)) = \dim(X) + 1$ (Ejercicio).
- ③ Si $X,Y \subseteq \mathbb{A}^N$ afines con $X \cap Y \neq \emptyset$, toda componente irred. Z de $X \cap Y$ es de dimensión $\geq \dim(X) + \dim(Y) N \stackrel{\mathsf{def}}{=} n + m N$, i.e.,

$$\operatorname{codim}(X \cap Y) \le \operatorname{codim}(X) + \operatorname{codim}(Y).$$

En efecto, $X \cap Y \cong (X \times Y) \cap \Delta_{\mathbb{A}^N}$ está dado en $X \times Y \subseteq \mathbb{A}^N \times \mathbb{A}^N$ por las N ecuaciones $x_i = y_i$ con $i \in \{1, \dots, N\}$. Luego, tenemos que $\dim(Z) \ge \dim(X \times Y) - N \stackrel{\text{def}}{=} n + m - N$.

EJEMPLOS

Aplicación importante

Supongamos que $X,Y\subseteq \mathbb{P}^N$ son variedades algebraicas proyectivas, y que $\dim(X)+\dim(Y)\geq N$. Entonces, $X\cap Y\neq\emptyset$.

Prueba: Los conos afines $C(X), C(Y) \subseteq \mathbb{A}^{N+1}$ son de dimensión n+1 y m+1 respectivamente (por (2)). Además, $0 \in C(X) \cap C(Y) \neq \emptyset$, y luego (3) implica que cada componente de $C(X) \cap C(Y)$ es de dimensión $\geq (n+1) + (m+1) - (N+1) = n + m - N + 1 \geq 1$.

Teorema de Bézout (versión baby)

Todo par de curvas proyectivas planas $C_1, C_2 \subseteq \mathbb{P}^2$ se intersectan.

DIMENSIÓN DE FIBRAS

Teorema (semi-continuidad superior de la dimensión)

Sean X e Y variedades irreducibles de $\dim(X) = n$ y $\dim(Y) = m$. Entonces, para todo $f: X \rightarrow Y$ morfismo regular sobreyectivo se tiene:

- $\forall y \in Y$, toda componente irred. de $f^{-1}(y)$ es de dimensión $\geq n m$.
- 2 $\exists V \subseteq Y$ abierto denso con $f^{-1}(y)$ de dimensión pura $n-m \ \forall y \in V$.
- ③ Para todo $r \in \mathbb{N}$, $X_r := \{x \in X \text{ tal que } \dim_x(f^{-1}(f(x))) \ge r\}$ es cerrado en X, i.e., la función

$$\delta: X \longrightarrow \mathbb{N}, \ x \longmapsto \dim_x(f^{-1}(f(x)))$$

es semi-continua superior.

Aquí, para cada $Z \subseteq X$ cerrado, definimos

$$\dim_x(Z) \coloneqq \max_{x \in Z_i} \{\dim(Z_i)\}$$

donde $Z = Z_1 \cup \cdots \cup Z_s$ son las componentes irreducibles de Z.

DIMENSIÓN DE FIBRAS

En (1): Asumimos Y afín y luego (Noether) $\exists g:Y \twoheadrightarrow \mathbb{A}^m$ finito sobreyectivo.

Sea $u: X \xrightarrow{f} Y \xrightarrow{g} \mathbb{A}^m$ y $p:=g(y) \in \mathbb{A}^m$. Así, $g^{-1}(p)=\{y,z_1,\ldots,z_N\}$ finito y $u^{-1}(p) \stackrel{\text{def}}{=} f^{-1}(y) \coprod f^{-1}(z_1) \coprod \cdots \coprod f^{-1}(z_n)$. En particular, componentes irreducibles de $f^{-1}(y)$ son componentes irreducibles de $u^{-1}(p)$.

Como $p = (p_1, ..., p_m) \in \mathbb{A}^m$ dado por las m ecuaciones $x_i - p_i = 0$, $u^{-1}(p)$ está dada (en un abierto afín) por $x_i \circ u - p_i = 0$ en X. Así, toda componente irreducible de $u^{-1}(p)$ es de dimensión $\geq \dim(X) - m \stackrel{\mathsf{def}}{=} n - m$.

En (2): Asumimos X e Y afines. La extensión de cuerpos $f^*: k(Y) \to k(X)$ es tal que k(X) tiene grado de trascendencia n-m sobre k(Y). Sean $u_1, \ldots, u_{n-m} \in k(X)$ algebraicamente independientes sobre k(Y) y $U \subseteq X$ abierto afín tal que $u_1, \ldots, u_{n-m} \in \mathcal{O}(U)$.

Podemos completar con u_{n-m+1}, \ldots, u_N hasta generar la k-álgebra $\mathcal{O}(U)$ (y así $U \subseteq \mathbb{A}^N$). En particular (las restricciones de) u_1, \ldots, u_N también generan el anillo cociente $\mathcal{O}(f^{-1}(y) \cap U)$.

DIMENSIÓN DE FIBRAS

Restringiéndose, podemos asumir $f^{-1}(y)$ irreducible y luego k(Z) cuerpo, con $Z \coloneqq f^{-1}(y) \cap U$. Veamos que $\exists V \subseteq Y$ abierto tal que u_{n-m+1}, \ldots, u_N son algebraicamente dependientes en k(Z) sobre $k \ (\Rightarrow \dim(Z) \le n-m)$:

Para cada $i \in \{n-m+1,\ldots,N\}$ hay una relación polinomial en $K \coloneqq k(Y)$

$$F_i(u_i, u_1, \dots, u_{n-m}) = 0 \text{ en } k(X), \text{ con } F_i \in K[T_1, \dots, T_{n-m+1}].$$

En $f^{-1}(y)$ los coeficientes de F_i son constantes. Luego, en el abierto $V \subseteq Y$ donde numeradores y denominadores de F_i no se anulan: si $y \in V$, cada $u_i|_{f^{-1}(y)}$ es algebraicamente dependiente de $u_1|_{f^{-1}(y)}, \ldots, u_{n-m}|_{f^{-1}(y)}$.

En (3), por inducción en $\dim(X)$: Sea $r \in \mathbb{N}$. Si $r \le n-m$ entonces $X_r = X$ (por (1)) cerrado. Por (2), para r > n-m existe $Z \nsubseteq X$ cerrado con $X_r \subseteq Z$.

Luego, $g \coloneqq f|_Z \colon Z \twoheadrightarrow W \coloneqq f(Z)$ sobreyectiva y $X_r \stackrel{\mathsf{def}}{=} Z_r$ si r > n - m. Como $\dim(Z) < \dim(X)$, $X_r \subseteq Z$ es cerrado (por inducción) y así el conjunto $X_r \stackrel{\mathsf{def}}{=} \{x \in X \text{ tal que } \dim_X (f^{-1}(f(x))) \ge r\} \subseteq X$ cerrado. \square

Morfismos cerrados

Caso particular importante

Sea f: X woheadrightarrow Y morfismo regular sobreyectivo entre variedades irreducibles. Si f es un morfismo **cerrado** (e.g. si X proyectiva) entonces la función $Y \mapsto \mathbb{N}, \ y \to \dim(f^{-1}(y))$ es semi-continua superior, i.e., para todo $r \in \mathbb{N}$ $Y_r := \{y \in Y \text{ tal que } \dim(f^{-1}(y)) \geq r\}$ es cerrado en Y.

Prueba: Aquí,
$$Y_r \stackrel{\mathsf{def}}{=} f(X_r)$$
. Como $X_r \subseteq X$ es cerrado por el Teorema anterior y f morfismo cerrado, $Y_r \subseteq Y$ lo es también.

Si
$$f: \mathbb{A}^3 \to \mathbb{A}^3$$
, $(x, y, z) \to (x, (xy-1)y, (xy-1)z)$, Y_1 no es cerrado.

Terminología: Sea f: X woheadrightarrow Y morfismo regular sobreyectivo entre variedades irreducibles. La **dimensión relativa** de f en $y \in Y$ es $\dim(f^{-1}(y))$.

Si $\dim(f^{-1}(y)) = d \ \forall y \in Y$, decimos que f es de **dimensión relativa** d, y escribimos $\dim(f) := \dim(X/Y) := d$.

CRITERIO DE IRREDUCIBILIDAD

Sea f: X woheadrightarrow Y morfismo regular sobreyectivo **cerrado**. Supogamos que

- $oldsymbol{0}$ Y es irreducible, y que
- ② Todas las fibras de f son irreducibles de la misma dimensión $d \in \mathbb{N}$.

Entonces, X es irreducible y $\dim(X) = \dim(Y) + d$.

Prueba: Sean $X = X_1 \cup \cdots \cup X_r$ componentes irreducibles de X. Para $y \in Y$,

$$d_i(y) \coloneqq \dim(f_i^{-1}(y)) \text{ donde } f_i \coloneqq f|_{X_i} \colon X_i \to Y,$$
 y donde $d \stackrel{\mathsf{def}}{=} \max_{i=1,\dots,r} \{d_i(y)\} \ \forall y \in Y.$ Luego, $Y = \bigcup_{i=1}^r \{y \in Y, \ d_i(y) \ge d\}$ es unión de cerrados. Como Y irreducible, $\exists i_0 \text{ con } d_{i_0}(y) = d \ \forall y \in Y.$

La fibra $f_{i_0}^{-1}(y)$ está contenida en el cerrado irred. $f^{-1}(y)$, y $\dim(f^{-1}(y))$ = $\dim(f_{i_0}^{-1}(y))$, por lo que $f_{i_0}^{-1}(y)$ = $f^{-1}(y)$ $\forall y \in Y$. Deducimos que

$$X \stackrel{\mathsf{def}}{=} \bigcup_{y \in Y} f^{-1}(y) = \bigcup_{y \in Y} f_{i_0}^{-1}(y) \stackrel{\mathsf{def}}{=} X_{i_0} \text{ es irreducible.}$$

Además, por el Teorema anterior $d = \dim(X) - \dim(Y)$ en este caso.

CRITERIO DE IRREDUCIBILIDAD

Ejemplo: Si X una variedad proyectiva y $f:X \twoheadrightarrow C$ morfismo no-constante, con C curva algebraica irreducible, entonces f sobreyectivo y

$$X_t \coloneqq f^{-1}(t)$$
 es una hipersuperficie para todo $t \in C$,

i.e., $\dim(X_t) = \dim(X) - 1$.

Definición (variedad abeliana)

Una variedad abeliana A es un grupo algebraico^a que es proyectivo e irreducible. Una variedad abeliana de dimensión 1 es una curva elíptica.

Cultura general

Si $k = \mathbb{C}$, toda variedad abeliana es de la forma $A = \mathbb{C}^g/\Lambda$ donde $\Lambda \cong \mathbb{Z}^{2g}$ es un reticulado, y donde $g = \dim(A)$.

^ai.e., una variedad algebraica que tiene la estructura de grupo, y tal que la multiplicación e inversión son morfismos regulares (cf. grupo de Lie).

VARIEDADES ABELIANAS SON ABELIANAS

Sea A una variedad abeliana y sea $f: A \times A \rightarrow A, \ (g,h) \rightarrow ghg^{-1}$ con grafo

$$\Gamma_f \stackrel{\text{def}}{=} \{ (g, h, ghg^{-1}), g, h \in A \} \subseteq A \times A \times A.$$

Veamos que $h = ghg^{-1} \ \forall g, h \in A$, i.e., $\operatorname{pr}_{23}(\Gamma_f) = \Delta_A \subseteq A \times A$ es la diagonal:

Notar que $A \cong \Delta_A$, y que si consideramos g = e tenemos que $\Delta_A \subseteq \operatorname{pr}_{23}(\Gamma_f)$.

Como A proyectiva irreducible, $A\times A\cong \Gamma_f$ y $\mathrm{pr}_{23}(\Gamma_f)$ también. Además, si

$$\operatorname{pr}_2: \operatorname{pr}_{23}(\Gamma_f) \longrightarrow A, (h, ghg^{-1}) \longmapsto ghg^{-1},$$

tenemos que $\operatorname{pr}_2^{-1}(e) \stackrel{\text{def}}{=} \{(e,e)\}$ es de dimensión 0.

Por semi-continuidad superior la **fibra general** $\operatorname{pr}_2^{-1}(y)$ tiene dimensión 0, y luego $\dim(\operatorname{pr}_{23}(\Gamma_f)) = \dim(A) + 0 = \dim(A)$.

Así,
$$\dim(\Delta_A) = \dim(\operatorname{pr}_{23}(\Gamma_f))$$
 y luego $\operatorname{pr}_{23}(\Gamma_f) = \Delta_A$.

BLOW-UP STRIKES BACK

Sean $W\subseteq V$ k-e.v. no-nulos, sea $\mathbb{P}(V)\cong \mathbb{P}^n$ y sea $\Lambda:=\mathbb{P}(W)\cong \mathbb{P}^{k-1}$ sub-espacio lineal asociado a W. Si $W=\{f_0=\cdots=f_{n-k}=0\}$, la función

$$f: U \longrightarrow \mathbb{P}^{n-k}, \ x \longmapsto [f_0(x), \dots, f_{n-k}(x)]$$

es regular en $U \coloneqq \mathbb{P}^n \setminus V(f_0, \dots, f_{n-k})$. El **blow-up** $\mathrm{Bl}_\Lambda(\mathbb{P}^n)$ es la clausura del grafo Γ_f en $\mathbb{P}^n \times \mathbb{P}^{n-k}$. Explícitamente, está dado por

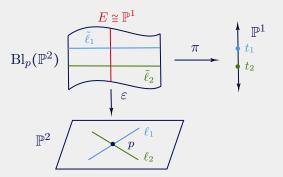
$$\mathrm{Bl}_{\Lambda}(\mathbb{P}^n) = \{(x,y) \in \mathbb{P}^n \times \mathbb{P}^{n-k}, \ y_i f_j(x) = y_j f_i(x) \ \forall i,j = 0,\ldots,n-k\},$$
 donde $\varepsilon \coloneqq \mathrm{pr}_1 : \mathrm{Bl}_{\Lambda}(\mathbb{P}^n) \to \mathbb{P}^n$ es el blow-up y $\pi \coloneqq \mathrm{pr}_2 : \mathrm{Bl}_{\Lambda}(\mathbb{P}^n) \to \mathbb{P}^{n-k}.$

Si $E := \varepsilon^{-1}(\Lambda)$ conjunto excepcional, para todo $x \in \Lambda$ tenemos $\varepsilon^{-1}(x) \cong \mathbb{P}^{n-k}$ irreducible de dimensión n-k.

Así, $\varepsilon|_E: E \longrightarrow \Lambda \cong \mathbb{P}^{k-1}$ cumple las hipótesis del criterio de irreducibilidad, de donde deducimos que $\dim(E) = (k-1) + (n-k) = n-1$, i.e., el conjunto excepcional $E \subseteq \mathrm{Bl}_{\Lambda}(\mathbb{P}^n)$ es una hipersuperficie.

BLOW-UP STRIKES BACK

Más aún, se puede probar (Ejercicio) que $\pi^{-1}(y) \cong \mathbb{P}^k$ para todo $y \in \mathbb{P}^{n-k}$ y en particular $\mathrm{Bl}_{\Lambda}(\mathbb{P}^n)$ es irreducible de dimensión n.



En particular, para todo $p \in \mathbb{P}^2$, la superficie $S = \mathrm{Bl}_p(\mathbb{P}^2)$ posee un morfismo regular sobreyectivo $\pi: S \twoheadrightarrow \mathbb{P}^1$ tal que $\pi^{-1}(t) \cong \mathbb{P}^1$ para todo $t \in \mathbb{P}^1$.