Geometría Algebraica Clase 2

Pedro Montero

Universidad Técnica Federico Santa María Valparaíso, Chile

1 de Agosto de 2023

§1.3 Prehaces y haces

MOTIVACIÓN (JEAN LERAY, 1945)

Hay varias propiedades *locales* de las funciones. Por ejemplo, si $U\subseteq\mathbb{C}$ es abierto no-vacío y $g:U\to\mathbb{C}$ función holomorfa tal que $g(z)\neq 0 \ \forall z\in U$

¿Existe
$$f: U \to \mathbb{C}$$
 función holomorfa tal que $g = e^f$?

La respuesta depende del abierto U. Por ejemplo,

- (a) Si $U = \mathbb{C}$ la respuesta es sí: $f(z) \coloneqq \int_1^z \frac{g'(s)}{g(s)} \, \mathrm{d}s$ funciona.
- (b) Si $U = \mathbb{C}^*$ la respuesta es **no**: si $g = \mathrm{Id}_{\mathbb{C}^*}$, la existencia de f implicaría que existe un logaritmo complejo definido en \mathbb{C}^* (imposible).

Localmente la respuesta es simpre afirmativa: tomar cualquier logaritmo en un pequeño disco $D(z_0,\varepsilon)\subseteq U$ y considerar $f\coloneqq\log(g)$ en $D(z_0,\varepsilon)$.

Leitmotiv de la Teoría de Haces

Considerar propiedades locales y obtener enunciados globales.

RECUERDOS DE TOPOLOGÍA

Sea (X,τ) un espacio topológico no-vacío. Un sub-conjunto de abiertos $\mathscr{B}\subseteq \tau$ es una **base** si:

- $\bullet \ \, \text{Los elementos de } \mathscr{B} \ \, \text{cubren } X \text{, i.e., } X = \bigcup_{U \in \mathscr{B}} U.$
- ② Para cada intersección no-vacía $U \cap V$ con $U, V \in \mathcal{B}$, se tiene que: Para todo $x \in U \cap V$, existe $W \in \mathcal{B}$ tal que $x \in W \subseteq U \cap V$.

Ejemplo: Sea $X = \mathbb{R}^n$ (o cualquier espacio métrico) con la topología euclideana, entonces $\mathscr{B} = \{\text{bolas abiertas}\}\$ es una base.

Recíprocamente: si ${\mathscr B}$ es una familia de sub-conjuntos de X tales que:

- (A1) Para todo $x \in X$, existe $U \in \mathcal{B}$ tal que $x \in U$.
- (A2) Para toda intersección no-vacía $U \cap V \neq \emptyset$, con $U, V \in \mathcal{B}$ se tiene que: Para todo $x \in U \cap V$, existe $W \in \mathcal{B}$ tal que $x \in W \subseteq U \cap V$.

Definimos la **topología generada** por \mathcal{B} como la topología de X con abiertos dados por todas las posibles uniones (arbitrarias) de elementos de \mathcal{B} .

PREHACES

Un **prehaz** \mathscr{F} en un espacio topológico X consiste en:

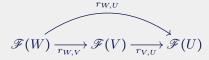
- **1** Para todo abierto $U \subseteq X$, un conjunto $\mathscr{F}(U)$.
- ② Para cada inclusión de abiertos $U \hookrightarrow V$, una aplicación de restricción

$$r_{V,U}: \mathscr{F}(V) \longrightarrow \mathscr{F}(U)$$

 $s \longmapsto r_{V,U}(s) \stackrel{\mathsf{def}}{=} s|_{U}$

verificando que

(a) Si $U \hookrightarrow V \hookrightarrow W$ son inclusiones de tres abiertos en X, entonces las restricciones



conmutan, i.e., $r_{W,U} = r_{V,U} \circ r_{W,V}$.

(b) Para todo abierto $U \subseteq X$, se tiene que $r_{U,U} = \mathrm{Id}_{\mathscr{F}(U)}$.

SECCIONES DE UN PREHAZ

Los elementos $s \in \mathscr{F}(U)$ son llamados secciones de \mathscr{F} sobre U.

Por motivos que discutiremos más adelante, en la práctica se utilizan tres notaciones para denotar el conjunto de las secciones de $\mathscr F$ sobre U:

$$\mathscr{F}(U) \stackrel{\mathsf{def}}{=} \Gamma(U, \mathscr{F}) \stackrel{\mathsf{def}}{=} \mathrm{H}^0(U, \mathscr{F}).$$

Frecuentemente, por "secciones de \mathscr{F} " nos referiremos al caso U=X. Los elementos de $\Gamma(X,\mathscr{F})$ son llamados secciones globales de \mathscr{F} .

EJERCICIO: Recordemos que $\mathbf{Top}(X)$ es la categoría cuyos objetos son los abiertos de X y cuyos morfismos son inclusiones. Probar que un prehaz es equivalente a un functor contravariante

$$\mathscr{F}: \mathbf{Top}(X) \to \mathbf{Conj}.$$

Cultura general: Esta observación es clave para definir el concepto de *Topología de Grothendieck*, donde se cambia $\mathbf{Top}(X)$ por otras categorías.

EJEMPLOS

- **1** Sea $X = \mathbb{R}^n$ (o una variedad diferenciable) y $\mathscr{F} = \mathscr{C}^{\infty}$ el prehaz con
 - $\mathscr{C}^{\infty}(U) \coloneqq \{f : U \longrightarrow \mathbb{R} \text{ función diferenciable}\},$

que es una \mathbb{R} -álgebra. Aquí, $r_{V,U}:\mathscr{C}^{\infty}(V)\to\mathscr{C}^{\infty}(U),\ f\mapsto f|_U$ es la restricción usual de funciones.

- ② Sea S conjunto fijo. El **prehaz constante** $\mathscr{F} \coloneqq S$ está dado por $S(U) \stackrel{\mathsf{def}}{=} \mathscr{F}(U) \coloneqq S$ para todo abierto $U \subseteq X$, y donde $r_{V,U} = \mathrm{Id}_S$.
- ③ Sea S conjunto fijo. Si $U \subseteq X$ abierto, una función $f: U \to S$ es localmente constante si $\forall x \in U$ existe una vecindad abierta $x \in V_x \subseteq U$ tal que $f|_{V_x}$ es una función constante¹. El **prehaz de funciones** localmente constantes $\mathscr{F} := \underline{S}$ está dado por

$$\underline{S}(U) \coloneqq \{f: U \to S \text{ función localmente constante}\},\$$

donde las restricciones son las restricciones usuales de funciones.

 $^{^{1}}$ e.g. En \mathbb{R}^{*} = $\mathbb{R} \times \{0\}$, la función $\mathrm{sgn}(x) \coloneqq x/|x|$ es localmente constante.

EJEMPLOS

③ Sea S un conjunto fijo y $\{*\}$ un singleton fijo, y sea $x_0 \in X$ un punto. El **prehaz rascacielo**, denotado $\iota_{x_0}(S)$ o $\iota_{x_0,*}(S)$, está dado por

$$(\iota_{x_0}(S))(U) \coloneqq \begin{cases} *\} & \text{si } x_0 \notin U \\ S & \text{si } x_0 \in U \end{cases}$$

Queda como Ejercicio describir las aplicaciones de restricción $r_{V,U}$.

Estructura algebraica adicional

Consideraremos prehaces \mathscr{F} tales que $\mathscr{F}(U)$ posee una estructura extra, y los morfismos de restricción la preservan. E.g., un **prehaz en grupos** es un prehaz \mathscr{F} tal que $\mathscr{F}(U)$ es un grupo para todo abierto $U\subseteq X$, donde las

$$r_{V,U}: \mathscr{F}(V) \longrightarrow \mathscr{F}(U), \ s \mapsto s|_{U}$$

son morfismos de grupos, y donde *adicionalmente* imponemos $\mathscr{F}(\varnothing) = \{0\}$ es el grupo trivial. De manera análoga, se define la noción de prehaz en grupos abelianos, en k-espacios vectoriales, en k-álgebras, etc.

MORFISMO DE PREHACES

Sean \mathscr{F} y \mathscr{G} dos prehaces en X con valores en la misma categoría \mathscr{C}^2 . Un morfismo de prehaces $\varphi:\mathscr{F}\to\mathscr{G}$ consiste en:

- **1** Para todo abierto $U \subseteq X$, un morfismo $\varphi_U : \mathscr{F}(U) \to \mathscr{G}(U)$ en \mathscr{C} .
- 2 Para cada inclusión de abiertos $U \hookrightarrow V$, el diagrama

$$\begin{array}{ccc} \mathscr{F}(V) \stackrel{\varphi_{V}}{\longrightarrow} \mathscr{G}(V) \\ r_{V,U} \Big\downarrow & r_{V,U} \Big\downarrow \\ \mathscr{F}(U) \stackrel{\varphi_{U}}{\longrightarrow} \mathscr{G}(U) \end{array}$$

es conmutativo, i.e., $\varphi_V(s)|_U = \varphi_U(s|_U)$ para toda $s \in \mathscr{F}(V)$.

²e.g. $\mathscr{C} = \mathbf{Conj}$ o $\mathscr{C} = \mathbf{Ab}$, etc.

Ejemplo de morfismo de prehaces

Sea G grupo abeliano, y sea G (resp. \underline{G}) el prehaz de funciones const. (resp. loc. const.) en X con valores en G. Hay un morfismo de prehaces

$$\varphi: G \longrightarrow \underline{G},$$

donde para $U\subseteq X$ abierto, el morfismo $\varphi_U:G(U)\longrightarrow \underline{G}(U)$ envía $g\in G(U)\stackrel{\mathrm{def}}{=} G$ en la función (globalmente) constante $f:U\to G,\ x\mapsto f(x)=g.$

Notar que si $U = U_1 \coprod U_2$ es unión disjunta de dos abiertos $U_1, U_2 \subseteq X$,

$$U = \bigcup_{U_1} \quad \coprod_{U_2} \quad \bigcup_{U_2} \quad \bigcup_{U_3} \quad$$

y si G es un grupo no-trivial con $g_1 \neq g_2$ elementos de G, entonces

$$f(x) = \begin{cases} g_1 & \text{si } x \in U_1 \\ g_2 & \text{si } x \in U_2 \end{cases}$$

es loc. constante en U, pero **no** es constante en U (i.e., φ_U **no** es isom.)

OPERACIONES BÁSICAS

Sean \mathscr{F} y \mathscr{G} dos prehaces de grupos abelianos en X, y sea $\varphi:\mathscr{F}\to\mathscr{G}$ un morfismo de prehaces. Definimos los prehaces

1 $\ker \varphi$ que envía el abierto $U \subseteq X$ en

$$(\ker \varphi)(U) := \ker [\varphi_U : \mathscr{F}(U) \longrightarrow \mathscr{G}(U)].$$

2 Im φ que envía el abierto $U \subseteq X$ en

$$(\operatorname{Im} \varphi)(U) := \operatorname{Im} [\varphi_U : \mathscr{F}(U) \longrightarrow \mathscr{G}(U)].$$

Si $\mathscr E$ es un prehaz de grupos abelianos, entonces $\mathscr E$ es un **sub-prehaz** de $\mathscr F$, y escribimos $\mathscr E\subseteq \mathscr F$, si para todo abierto $U\subseteq X$ se tiene $\mathscr E(U)\subseteq \mathscr F(U)$ es un sub-grupo abeliano y el diagrama

es conmutativo para todo par de abiertos $U \subseteq V$ de X.

OPERACIONES BÁSICAS

En particular, $\ker \varphi \subseteq \mathscr{F}$ e $\operatorname{Im} \varphi \subseteq \mathscr{G}$ son sub-prehaces.

Para todo sub-prehaz $\mathscr{E} \subseteq \mathscr{F}$ definimos el **prehaz cociente** mediante

$$(\mathscr{F}/\mathscr{E})(U) \coloneqq \mathscr{F}(U)/\mathscr{E}(U)$$

para todo abierto $U \subseteq X$.

Definimos el prehaz cokernel mediante

$$(\operatorname{coker} \varphi)(U) \coloneqq \mathscr{G}(U)/(\operatorname{Im} \varphi)(U)$$

para todo abierto $U \subseteq X$.

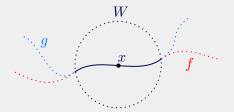
HENRI CARTAN & JEAN-PIERRE SERRE NOTAN LA IMPORTANCIA DE LA NOCIÓN DE HAZ³ EN GEOMETRÍA ALGEBRAICA (1952–1953)

MOTIVACIÓN

Sea $X = \mathbb{R}^n$ y \mathscr{C}^{∞} el prehaz de funciones diferenciables en X. Dado $x \in X$, los **gérmenes** de funciones diferenciables en x son clases de equiv. de pares

$$\{(f,U), \text{ donde } x \in U \text{ abierto y } f \in \mathscr{C}^{\infty}(U)\},\$$

con $(f,U) \sim (g,V)$ si existe un abierto $x \in W \subseteq U \cap V$ tal que $f|_W = g|_W$.



El conjunto de gérmenes de funciones diferenciables en $x \in X$ se llama el **tallo** de \mathscr{C}^{∞} en x, y se denota \mathscr{C}^{∞}_x . Queda como Ejercicio probar que \mathscr{C}^{∞}_x es un anillo local con ideal maximal dado por $\mathfrak{m}_x = \{ f \in \mathscr{C}^{\infty}_x, f(x) = 0 \}$.

TALLOS Y GÉRMENES

Sea \mathscr{F} un prehaz en X. El tallo⁴ de \mathscr{F} en un punto $x \in X$ está dado por

$$\mathscr{F}_x \coloneqq \varinjlim_{U \ni x} \mathscr{F}(U) \stackrel{\mathsf{def}}{=} \left(\coprod_{\substack{U \subseteq X \text{ abierto} \\ \mathsf{tal que } x \in U}} \mathscr{F}(U) \right) / \sim,$$

donde

Para $s \in \mathcal{F}(U)$ y $t \in \mathcal{F}(V)$ se tiene que $(s,U) \sim (t,V)$ en \mathcal{F}_x si existe un abierto $x \in W \subseteq U \cap V$ tal que $s|_W = t|_W$ en $\mathcal{F}(W)$.

Si U es una vecindad abierta del punto $x \in X$ y $s \in \mathscr{F}(U)$, denotamos por $s_x = [(s, U)]$ la clase de s en el tallo \mathscr{F}_x y la llamamos el **germen** de la sección s en el punto $x \in X$.

⁴En inglés, stalk.

DEFINICIÓN DE HAZ

Sea \mathscr{F} un prehaz de grupos abelianos en X. Decimos que \mathscr{F} es un **haz** si se cumplen las siguientes condiciones para todo abierto $U\subseteq X$:

- **1 Pegado.** Si $U = \bigcup_{i \in I} U_i$ es un cubrimiento abierto, y si $s_i \in \mathscr{F}(U_i)$ son secciones tales que $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ para todos $i, j \in I$. Entonces, existe una sección $s \in \mathscr{F}(U)$ tal que $s|_{U_i} = s_i$ para todo $i \in I$.
- **2** Unicidad. Si $U = \bigcup_{i \in I} U_i$ es un cubrimiento abierto, y si $s \in \mathscr{F}(U)$ es una sección sobre U tal que $s|_{U_i} = 0$ en $\mathscr{F}(U_i)$ para todo $i \in I$. Entonces, s = 0 en $\mathscr{F}(U)$.

Por definición, un morfismo de haces $\varphi: \mathscr{F} \to \mathscr{G}$ es símplemente un morfismo entre los prehaces subyacentes.

Definición intuitiva

Un haz es un prehaz donde exigimos que secciones locales s_i en abiertos U_i que cubren un abierto U, y que coinciden en las intersecciones $U_i \cap U_j$, puedan pegarse de manera única en una sección s sobre el abierto U.

EJEMPLOS

- ${\bf 0}\;\;{\sf El}\;{\sf prehaz}\;\mathscr{C}^{\infty}\;{\sf de}\;{\sf funciones}\;{\sf diferenciables}\;{\sf es}\;{\sf un}\;{\sf haz}.$
- ② Sean X e Y espacios topológicos. El prehaz $\mathscr{C}(X;Y)$ en X que asocia a cada abierto $U\subseteq X$ el conjunto

$$\mathscr{C}(X;Y)(U) \stackrel{\mathsf{def}}{=} \{ f : U \to Y \text{ función continua} \}$$

es un haz⁵.

- ③ Sea G un grupo abeliano. El prehaz constante G no siempre es un haz. E.g., si $U = U_1 \coprod U_2$ es unión disjunta de dos abiertos no-vacíos, $|G| \ge 2$, y si $g_i \in G(U_i) \stackrel{\text{def}}{=} G$ son elementos diferentes con i = 1, 2. Entonces, no existe $g \in G(U) \stackrel{\text{def}}{=} G$ tal que $g|_{U_1} = g_1$ y $g|_{U_2} = g_2$.
- **4** Sea G un grupo abeliano. El prehaz \underline{G} de funciones localmente constantes en X con valores en G, es un haz.
- **Sea** Ejercicio: Sea G un grupo abeliano y $x_0 \in X$ un punto. Probar que el prehaz rascacielo $\iota_{x_0}(G)$ es un haz.

⁵Esto es consecuencia del "pasting lemma" en topología.

KERNEL ES UN HAZ

Sea $\varphi: \mathscr{F} \to \mathscr{G}$ un morfismo de haces de grupos abelianos. Entonces, el prehaz $\ker \varphi$ es siempre un haz:

Sea $U \subseteq X$ un abierto y $U = \bigcup_{i \in I} U_i$ un cubrimiento abierto. Consideremos secciones $s_i \in \mathscr{F}(U_i)$ tales que $s_i \in (\ker \varphi)(U_i)$ para todo $i \in I$, i.e., $\varphi_{U_i}(s_i) = 0$ en $\mathscr{G}(U_i)$. Si tenemos que

$$s_i|_{U_i\cap U_j}=s_j|_{U_i\cap U_j} \text{ en } \mathscr{F}(U_i\cap U_j) \text{ para todos } i,j\in I,$$

entonces el hecho que $\mathscr F$ es un haz implica que existe una única sección $s\in \mathscr F(U)$ tal que $s|_{U_i}=s_i$ para todo $i\in I$. Más aún, tenemos que

$$\varphi_U(s)|_{U_i} = \varphi_{U_i}(s|_{U_i}) = \varphi_{U_i}(s_i) = 0 \text{ en } \mathscr{G}(U_i) \text{ para todo } i \in I.$$

Dado que \mathscr{G} es un *haz*, tenemos que $\varphi_U(s) = 0$ y luego $s \in (\ker \varphi)(U)$. \square

Ejercicio 1.3.20 del Apunte: Probar que ${\rm Im}\,\varphi$ no necesariamente es un haz.

Nos gustaría poder definir un

HAZ IMAGEN.

¿CÓMO CONSTRUIR UN HAZ A

PARTIR DE UN PREHAZ?

GÉRMENES COMPATIBLES

Sea \mathscr{F} un prehaz de grupos abelianos en X. Definimos el prehaz \mathscr{F}^+ en X como el prehaz que asocia a cada abierto $U\subseteq X$ al grupo $\mathscr{F}^+(U)$ de "gérmenes compatibles" de \mathscr{F} sobre U. Más formalmente,

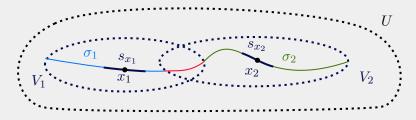
$$\mathscr{F}^+(U) \coloneqq \left\{ (s_x)_{x \in U} \in \prod_{x \in U} \mathscr{F}_x \text{ tal que } (\star) \right\},$$

donde la condición de compatibilidad (*) está dada por

 (\star) Para todo $x \in U$, existe una vecindad abierta $V \subseteq U$ de x y una sección $\sigma \in \mathscr{F}(V)$ tal que los gérmenes $\sigma_y = s_y$ coinciden en \mathscr{F}_y para todo $y \in V$.

GÉRMENES COMPATIBLES

En términos geométricos, tenemos que:



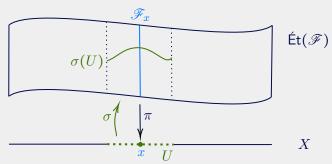
Más aún, para todo prehaz \mathscr{F} hay un morfismo natural $j:\mathscr{F}\to\mathscr{F}^+$ que para todo abierto $U\subseteq X$ y toda sección $s\in\mathscr{F}(U)$ asocia $j_U(s)\coloneqq(s_x)_{x\in U}$, el conjunto de gérmenes $s_x\in\mathscr{F}_x$ para todo $x\in U$.

Proposición: \mathscr{F}^+ es un haz en X

Definimos el espacio étalé de F como el conjunto

$$\mathsf{\acute{E}t}(\mathscr{F})\coloneqq\coprod_{x\in X}\mathscr{F}_x,$$

que viene dotado de una proyección natural $\pi : \text{\'Et}(\mathscr{F}) \to X$.



Una sección $s \in \mathcal{F}(U)$ define una función

$$\sigma: U \longrightarrow \text{\'et}(\mathscr{F}), \ x \longmapsto s_x \in \mathscr{F}_x$$

Proposición: \mathscr{F}^+ es un haz en X

Los subconjuntos de Ét(\mathscr{F}) de la forma $\sigma(U)$ verifican los axiomas de una base de una topología, y permiten ver a Ét(\mathscr{F}) como un espacio topológico.

Finalmente, notamos que el conjunto $\mathscr{F}^+(U)$ coincide exactamente con el conjunto de funciones $\sigma:U\to \operatorname{\acute{E}t}(\mathscr{F})$ que son *continuas* respecto a la topología que acabamos de definir. En particular, \mathscr{F}^+ es un haz en X. \square

LEMA: $j_U: \mathscr{F}(U) \xrightarrow{\simeq} \mathscr{F}^+(U), \ s \mapsto (s_x)_{x \in U} \text{ SI } \mathscr{F} \text{ HAZ}$

Supongamos que \mathscr{F} es un haz, y sea $U \subseteq X$ abierto.

- INYECTIVIDAD: Sea $s \in \mathscr{F}(U)$ con $j_U(s) \stackrel{\text{def}}{=} (s_x)_{x \in U} = 0$ en $\mathscr{F}^+(U)$. Por definición de \mathscr{F}_x , $\exists U = \cup_{i \in I} U_i$ cubrimiento abierto con $s|_{U_i} = 0$ para todo $i \in I$. Luego, s = 0 pues \mathscr{F} haz.
- SOBREYECTIVIDAD: Sean $(s_x)_{x \in U} \in \mathscr{F}^+(U)$ gérmenes compatibles. Por definición, $\exists U = \cup_{i \in I} U_i$ cubrimiento abierto y $\sigma_i \in \mathscr{F}(U_i)$ con $(\sigma_i)_x = s_x$ para todo $x \in U_i$. Luego, $(\sigma_i)_x = (\sigma_j)_x$ para $x \in U_i \cap U_j$. Como j_U inyectiva, $\sigma_i|_{U_i \cap U_j} = \sigma_j|_{U_i \cap U_j} \ \forall i,j \in I$ y luego $\exists ! \ \sigma \in \mathscr{F}(U)$ con $\sigma|_{U_i} = \sigma_i$ para todo $i \in I$ (pues \mathscr{F} haz). Así, $\sigma_x = s_x \ \forall x \in U$.

TEOREMA: HAZ ASOCIADO A UN PREHAZ

Sea \mathscr{F} un prehaz de grupos abelianos en X. Entonces, el haz \mathscr{F}^+ junto con el morfismo canónico de prehaces $j:\mathscr{F}\to\mathscr{F}^+$ cumplen la propiedad universal siguiente:

Para todo haz de grupos abelianos \mathscr{G} en X y todo morfismo de prehaces $\varphi:\mathscr{F}\to\mathscr{G}$, $\exists!$ morfismo de haces $\varphi^+:\mathscr{F}^+\to\mathscr{G}$ tal que

es un diagrama conmutativo.

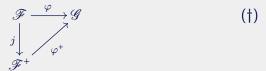
Así, el par (\mathscr{F}^+,j) es único módulo un único isomorfismo. Diremos que \mathscr{F}^+ es el haz asociado a \mathscr{F} (o hacificación de \mathscr{F}).

TEOREMA: HAZ ASOCIADO A UN PREHAZ

• Functorialidad de j: un morfismo de prehaces $\varphi: \mathscr{F} \to \mathscr{G}$ induce un morfismo de haces $\varphi^+: \mathscr{F}^+ \to \mathscr{G}^+$ y el diagrama sgte el conmutativo

$$\begin{array}{ccc}
\mathscr{F} & \xrightarrow{\varphi} \mathscr{G} \\
\downarrow j & & \downarrow j \\
\mathscr{F}^+ & \xrightarrow{\varphi^+} \mathscr{G}^+
\end{array}$$

ullet \mathscr{G} haz implica $j:\mathscr{G}\overset{\sim}{ o}\mathscr{G}^+$ isomorfismo y luego obtenemos



• Unicidad de φ^+ : Sea $\sigma = (s_x)_{x \in U} \in \mathscr{F}^+(U)$, y sean $U = \cup_{i \in I} U_i$ y $\sigma_i \in \mathscr{F}(U_i)$ tal que $(\sigma_i)_x = s_x \ \forall x \in U_i$. Así, $\varphi_U^+(\sigma)|_{U_i} = \varphi_{U_i}(\sigma_i)$ (†). Por último, \mathscr{G} haz implica que $\varphi_{U_i}(\sigma_i)$ determinan completamente $\varphi^+(\sigma)$ (pues determinan $\varphi_U^+(\sigma)|_{U_i}$).