Ayudantía 4 (MAT426)

Anna Meyer

Departamento de Matemática, Universidad Técnica Federico Santa María

1. We say that an affine variety $X \subseteq \mathbb{A}^{n+1}$ is a **cone** if $0 \in X$ and if $x \in X$ then $\lambda x \in X$ for all $\lambda \in k$. Prove that there is a bijection between cones in \mathbb{A}^{n+1} and closed subvarieties of \mathbb{P}^n .

Proof. First we claim that cones correspond to affine varieties generated by a set S of non-constant homogeneous polynomials.

Let $S \subseteq k[x_0, \ldots, x_n]$ be such a set. We need to show that $V(S) = \{x \in \mathbb{A}^{n+1} : f(x) = 0 \quad \forall f \in S\}$ is a cone. Since f is homogeneous and non-constant, we have f(0) = 0 for all $f \in S$, thus $0 \in V(S)$. Further, let $x \in V(S)$ and $\lambda \in k$. Then for every $f \in S$ it holds $f(\lambda x) = \lambda^{deg_f} f(x) = \lambda^{deg_f} 0 = 0$, where the first equality holds since f is homogeneous and f(x) = 0 since $x \in V(S)$. Thus, $\lambda x \in V(S)$ and V(S) is a cone. Now, let conversely $X \subseteq \mathbb{A}^{n+1}$ be a cone. We will show that $\mathcal{I}(X)$ is generated by a set of non-constant homogeneous polynomials S. Then we can conclude $X = V(\mathcal{I}(X)) = V(\langle S \rangle) = V(S)$.

Since $k[x_0, \dots, x_n] = \bigoplus_{d \in \mathbb{N}} \{ \sum_{\substack{i_0, \dots, i_n \in \mathbb{N} \\ i_0 + \dots + i_n = d}} a_{i_0, \dots, i_n} x_0^{i_0} \cdots x_n^{i_n} : a_{i_0, \dots, i_n} \in k \quad \forall i_0, \dots, i_n \}, \text{ every } f \in k[x_0, \dots, x_n] \}$

has a unique homogeneous decomposition, i.e. $f = \sum_{d \in \mathbb{N}} f_d$ with f_d homogeneous for all $d \in \mathbb{N}$ and only finitely many $f_d \neq 0$. So let $0 \neq f \in \mathcal{I}(X)$ with homogeneous decomposition $f = \sum_{d \in \mathbb{N}} f_d$. We need to show $f_d \in \mathcal{I}(X)$. Let $x \in X$. Since X is a cone, we have $\lambda x \in X$ for all $\lambda \in k$ and since $f \in \mathcal{I}(X)$ we get $0 = f(\lambda x) = \sum_{d \in \mathbb{N}} f_d(\lambda x) = \sum_{d \in \mathbb{N}} \lambda^d f_d(x)$, where the last equality follows since the f_d are homogeneous. Interpreting the last term as a polynomial in λ which is equal to the zero polynomial we get $f_d(x) = 0$ for all $d \in \mathbb{N}$. Since $x \in X$ was arbitrary, this shows $f_d \in \mathcal{I}(X)$ for all $d \in \mathbb{N}$. Thus, every polynomial in $\mathcal{I}(X)$ can be written as a finite sum of homogeneous polynomials. Further note, that since $0 \in X$ (X is a cone), f(0) = 0 for all $f \in \mathcal{I}(X)$, the generating polynomials are non-constant. Thus, $\mathcal{I}(X)$ is as desired generated by a set of non-constant homogeneous polynomials. This shows the proposed claim.

With this observation we can now proof the main claim. To distinguish between affine varieties and closed subvarieties of \mathbb{P}^n , we introduce the notation of $V_a(S) = \{x \in \mathbb{A}^{n+1} : f(x) = 0 \quad \forall f \in S\}$ for affine varieties and $V_p(S) = \{[x_0, \ldots, x_n] \in \mathbb{P}^n : f(x) = 0 \quad \forall f \in S\}$. Note that for $V_p(S)$ to be well defined, we require f to be homogeneous for all $f \in S$.

Let $X \subseteq \mathbb{A}^{n+1}$ be a cone. By our observation above, there exists a set $S \subseteq k[x_0, \ldots, x_n]$ of non-constant homogeneous polynomials such that $X = V_a(S)$. Now we consider the "projectivization" of X, which is defined as $\mathbb{P}(X) = \{[x_0, \ldots, x_n] : (x_0, \ldots, x_n) \in X \setminus \{0\}\} \subseteq \mathbb{P}^n$. Thus we have $\mathbb{P}(X) = \mathbb{P}(V_a(S)) = V_p(S)$ which is a closed subvariety of \mathbb{P}^n .

Conversely, let X be a closed subvariety of \mathbb{P}^n . Thus, there exists a set of non-constant homogeneous polynomials S such that $X = V_p(S)$. We define the cone over X as $C(X) = \{0\} \cup \{(x_0, \ldots, x_n) : [x_0, \ldots, x_n] \in X\} \subseteq \mathbb{A}^{n+1}$. Thus we get $C(X) = C(V_p(S)) = V_a(S)$, which is a cone as we have proven above.

Thus, we obtain a bijection as desired.

2. By means of the Segre embedding, prove that \mathbb{P}^n is a separated algebraic variety.

Proof. As we know already that \mathbb{P}^n is a algebraic variety, it only remains to show that it is separated, i.e. $\Delta_{\mathbb{P}^n} = \{(x, x) : x \in \mathbb{P}^n\}$ is closed in $\mathbb{P}^n \times \mathbb{P}^n$. Using the Segre embedding we will show, that $\Delta_{\mathbb{P}^n}$ is isomorph to a closed subset of $\mathbb{P}^N \cong \mathbb{P}^n \times \mathbb{P}^n$ where $N = (n + 1)^2 - 1$.

Clearly we have by definition of the homogeneous coordinates

$$([x_0, \dots, x_n], [y_0, \dots, y_n]) \in \Delta_{\mathbb{P}^n} \iff [x_0, \dots, x_n] = [y_0, \dots, y_n]$$
$$\iff \begin{pmatrix} x_0 & x_1 & \cdots & x_n \\ y_0 & y_1 & \cdots & y_n \end{pmatrix} \text{ has rank} \le 1$$
$$\iff \det \begin{pmatrix} x_i & x_j \\ y_i & y_j \end{pmatrix} = 0 \quad \forall i, j$$
$$\iff x_i y_j - x_j y_i = 0 \quad \forall 0 \le i, j \le n$$

Thus, using the Segre coordinates $z_{ij} := x_i y_j$, we get that

$$\Delta_{\mathbb{P}^n} \cong \{ [z_{00}, \dots, z_{nn}] \in \mathbb{P}^N : z_{ij} = z_{ji} \ \forall \ 0 \le i, j \le n \} = V(\{ z_{ij} - z_{ji} : \ 0 \le i, j \le n \}),$$

which is a closed subvariety of \mathbb{P}^N generated by the homogenous polynomials $z_{ij} - z_{ji}$.

3. Let X be a projective variety and assume that there is a closed embedding $X \hookrightarrow Y$, where Y is an **affine** algebraic variety. Prove that X is a finite set of points.

Proof. Since Y is an affine algebraic variety, there exists an embbedding $g: Y \hookrightarrow \mathbb{A}^m$ for a certain $m \in \mathbb{N}$. Let $f: X \hookrightarrow Y$ be a closed embedding of the projective variety X into Y. For $i = 1, \ldots, m$ we denote with p_i as usual the projection on the *i*-th coordinate. Thus, we have

$$X \stackrel{f}{\hookrightarrow} Y \stackrel{g}{\hookrightarrow} \mathbb{A}^m \stackrel{p_i}{\longrightarrow} \mathbb{A}^1 \cong k.$$

Since all these functions are regular, we get that $f_i := p_i \circ g \circ f : X \to k$ is regular for all *i*. Thus, we can apply Corollary 2.7.12 on each f_i to deduce that $f_i(X)$ is finite for all *i*. This however implies, that g(f(X)) is finite. Since *f* and *g* are injective (as they are embeddings), $g \circ f$ is injective and hence we can conclude that *X* is finite.