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In this series of talks, we will discuss recent advances on the existence of Kähler-Einstein metrics on Fano
varieties. More precisely, the works of Chen-Donaldson-Sun and Tian imply that a Fano variety X (i.e., a
complex smooth projective variety such that OX(−KX) = det(TX) is ample) possesses a Kähler-Einstein metric
if and only if it is K-polystable. This latter condition, introduced by Tian (1997) and Donaldson (2002), allows
us to reduce a problem in Partial Differential Equations and Differential Geometry to the language of Algebraic
Geometry. The objective of the seminar will be to introduce the definition of stability and the properties of
such varieties, also aiming to learn how to use this language in explicit examples.
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1 The Calabi problem for Fano varieties
All varieties will be defined over the field of complex numbers C.

To study projective (smooth) varieties X from the point of view of Differential Geometry, we consider Hermitian
metrics h (instead of Riemannian metrics), which in turn are associated with

ω =
loc

i

2π

∑
ij

hij dzi ∧ dzj a (1, 1)-form with h = (hij) Hermitian matrix with hij : X → C C∞ function.

We say that (X,ω) is a Kähler variety if dω = 0.

Example 1.1. In Pn, the Fubini-Study metric associated to1

ωFS :=
i

2
∂∂ log ∥z∥2

is Kähler. Thus, for X ⊆ Pn smooth projective subvariety, we have that ω := ωFS|X is a Kähler metric on X,
i.e., every smooth projective variety is a Kähler variety.

Remark 1.2. If X ∼= P1, C/Λ or D/Γ is a Riemann surface, there are classical metrics (Fubini-Study,
Euclidean, and Poincaré, respectively) on X with constant curvature (+1, 0, −1, respectively).

In 1954, Eugenio Calabi proposed studying the existence of a Kähler metric ω on every smooth projective
variety X such that

Ric(ω) = λω for some λ ∈ {−1, 0, 1} (Kähler-Einstein Equation)

where Ric(ω) =
loc
−i∂∂ log det(hij) is the Ricci curvature of ω.

Example 1.3. In the affine chart U0 = {z = [Z0, Z1, Z2] ∈ P2, Z0 ̸= 0} ∼= A2 of P2 with coordinates (z1, z2)
we have ωFS =

loc

i
2∂∂ log(1 + |z1|2 + |z2|2) = i

2π

∑
ij hij dzi ∧ dzj where

h = (hij) =
π

(1 + |z1|2 + |z2|2)2

(
1 + |z2|2 −z1z2
−z1z2 1 + |z1|2

)
with det(hij) = π2(1 + |z1|2 + |z2|2)−3 and then Ric(ωFS)

def
= 6πωFS. Since Ric is invariant under rescalings

ω 7→ λ−1
0 ω, we can normalize to obtain λ = 1. Similarly, Ric(ωFS) = 2π(n+ 1)ωFS in Pn.

Recall 1.4 (Kodaira’s Theorem). The Ricci curvature Ric(ω) defines a real (1, 1)-form such that [Ric(ω)] =

2πc1(X)
def
= 2π[−KX ] ∈ H1,1(X,R). Thus, in the case λ = −1 (resp. λ = 1) we have that [KX ] = [ω] (resp.

[−KX ] = [ω]) is cohomologous to a positive (1, 1)-form. Kodaira’s embedding theorem ensures that KX (resp.
−KX) is ample. Thus, the Kähler-Einstein equation implies that:

1. X is canonically polarized (i.e., KX ample) if λ = −1.

2. X is such that KX ∼Q 0 if λ = 0.

3. X is Fano (i.e., −KX ample) if λ = 1.

The existence of Kähler-Einstein metrics on all canonically polarized and Calabi-Yau varieties are fundamental
results in Geometric Analysis by Aubin and Yau, respectively. On the other hand, we will see that not every
Fano variety admits a Kähler-Einstein metric.

Example 1.5. Let X be a smooth Fano variety. Then,

• (dim(X) = 1) X ∼= P1 is Kähler-Einstein.

• (dim(X) = 2) X ∼= P1 ×P1, P2 or Blp1,...,pr
(P2) blow-up at r ≥ 8 points in general position. We will see

that all of them are Kähler-Einstein except for Blp(P
2) ∼= F1 and Blp1,p2(P

2).

• (dim(X) = 3) Iskovskikh, Mori, and Mukai classified the 3-folds of Fano into 17 + 88 = 105 families. In
2023, Araujo-Castravet-Cheltsov-Fujita-Kaloghiros-Martínez–García-Shramov-Suess-Viswanathan proved
that for exactly 78 families, the general member admits a Kähler-Einstein metric.

1Here, ∂f =
∑ ∂f

∂zi
dzi and ∂f =

∑ ∂f
∂zj

dzj .
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Theorem 1.6 (Chen–Donaldson–Sun 2014, Tian 2015). A smooth Fano variety X admits a Kähler-Einstein
metric if and only if (X,−KX) is K-polystable.

Surprisingly, the notion of K-polystability is a purely algebro-geometric concept, and it arises from the idea
of using Geometric Invariant Theory (GIT) on the Hilbert scheme:

Let X be a projective variety and L ∈ Pic(X). A test configuration of (X,L) is an equivariant degeneration
by Gm obtained as follows:

1. Given an embedding φ|L⊗k| : X ↪→ PN for some k ≫ 0, and

2. Given a 1-parameter subgroup given by a group morphism ρ : Gm → PGLN+1(C),

we consider the induced action of Gm on PN and the embedding

j : X ×Gm ↪→ PN ×Gm, (x, t) 7→ (ρ(t)x, t).

Thus, the Zariski closure X := j(X ×Gm) ⊆ PN ×A1 is endowed with a projection π : X → A1 which is a
flat morphism and such that L := OX (1) ∈ Pic(X ) is relatively ample over π.

We will say that (X ,L )
π−→ A1 is a test configuration and that the special fiber X0

def
= π−1(0) is the flat

limit of ρ(t) ·X ⊆ PN as t→ 0.

Example 1.7 (Li–Xu). Let (X,L) = (P1,OP1(3)) be the twisted cubic and consider the non-normal variety

X := {s2(x+ w)w − z2 = sx(x+ w)− yz = xz − syw = y2w − x2(x+ w) = 0} ⊆ P3
[x,y,z,w] ×A1

s.

with Gm action given by t · ([x, y, z, w], s) = ([x, y, tz, w], ts). Thus, X0
∼= Proj(C[x, y, z, w]/I0) nodal plane

cubic given by I0 = ⟨z2, yz, xz, y2w − x2(x+ w)⟩ and p = (0, 0, 0, 1) non-reduced point of X0.

Analogous to the Hilbert-Mumford criterion for stability in the context of GIT, Futaki (1983) and Donaldson
(2002) proposed studying the Gm action on the special fiber X0. More precisely, we will see that the Gm action
on the section spaces H0(X0,L

⊗m
0 ) allows us to define the Donaldson-Futaki invariant DF(X ,L ) ∈ Q

associated with a test configuration (X ,L ) with normal total space X and say that:

1. (X,L) is K-semistable if DF(X ,L ) ≥ 0 for all test configurations (X ,L ) of (X,L).

2. (X,L) is K-polystable if it is K-semistable and if DF(X ,L ) = 0 implies (X ,L ) ∼= (X,L)×A1.

Remark 1.8 (MMP). Very recent works (Li, Fujita, Odaka, Okada, Xu, etc.) have proven that the moduli
space of smooth Kähler-Einstein Fano varieties is compactified by considering K-polystable Fano varieties with
klt singularities (instead of slc), as conjectured by Tian.

We will also see that the calculation of DF(X ,L ) can be done explicitly because L is a Gm-linearized line
bundle (cf. Chapter 7 of Lectures on Invariant Theory by I. Dolgachev):

Let X be an algebraic variety with Gm action α : Gm ×X → X and let L ∈ Pic(X). A Gm-linearization of
L is an action of Gm on the total space V(L) of L that makes the projection V(L)

π−→ X a Gm-equivariant
morphism and such that the action on the fibers is linear. More formally, it is an action σ : Gm×V(L)→ V(L)
such that the following diagram commutes

Gm ×V(L)
σ //

IdGm ×π

��

V(L)

π

��

Gm ×X
α // X

and such that the zero section 0L ⊆ V(L) is Gm-invariant. In particular, for all t ∈ Gm and all x ∈ X

σx(t) : Lx
≃−→ Lt·x is a linear isomorphism.

Moreover, since Pic(Gm) ∼= {1}, every L ∈ Pic(X) admits a linearization and the possible classes of linearizations
are parametrized by the character group X(Gm)

def
= Homgr(Gm,Gm) ∼= Z. For example, if X = P1 and

L = OP1(−1) then V(L)
def
= {([x0, x1], λ(x0, x1)), [x0, x1] ∈ P1, λ ∈ C} and the Gm action given by t ·

([x0, x1], λ(x0, x1)) := ([x0, tx1], λ(x0, tx1)) determines a Gm-linearization of L.
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2 Test Configurations and Rees Algebras
Let X be a (separated, finite type over k = C) projective scheme and L ∈ Pic(X) an ample line bundle.

Definition 2.1. A test configuration of (X,L) is a pair (X ,L ) along with

1. a proper and flat morphism π : X → A1 = Spec(C[t]),

2. an action of Gm on X such that π is equivariant for the standard action (a, t) 7→ at of Gm on A1,

3. a Q-line bundle L ∈ Pic(X )⊗Z Q that is π-ample and Gm linearized on X ,

4. an isomorphism (X1,L1) ∼= (X,L) between the general fiber and the original polarized variety.

Example 2.2. Let (X,L) be as in the previous definition.

1. The trivial test configuration (XA1 , LA1) := (X,L)×A1 is the one where the action of Gm on XA1 is
the product action, with the action on X being trivial and the action on A1 being the standard action.

2. A product test configuration is (XA1 , LA1) as before, except that the action of Gm on X is not
necessarily trivial. If Aut◦(X) ∼= {1}, then every product configuration is trivial.

3. Let Z ⊆ X be a closed subscheme and let σ : X := BlZ×0(X ×A1) → X ×A1. Then p := prA1 ◦σ :
X → A1 is a proper and flat morphism2. Also, X0 = E + F , where E = σ−1(Z × 0) is the exceptional
divisor and where F ∼= BlZ(X) is the strict transform of X × 0. If Z ⊆ X is Gm-invariant (e.g., by the
trivial action on X), then there is an induced action of Gm on X , and since −E is σ-ample, we have that
L := σ∗LA1 ⊗ OX (−tE) is π-ample for 0 < t≪ 1. Thus, (X ,L ) is a test configuration.

4. Let r ∈ N≥1 be such that rL := L⊗r is very ample, i.e., ι : X ↪→ P(V ∨) embedding, where V = H0(X, rL).
A group morphism ρ : Gm → GL(V ) induces a test configuration (Xρ,Lρ) where Xρ is the Zariski closure
in P(V ∨)×A1 of the image of X ×Gm ↪→ P(V ∨)×Gm, (x, a) 7→ (ρ(a)x, a) and where Lρ := 1

rOX (1).
All test configurations of (X,L) are obtained in this way (Ross–Thomas, 2007).

Objective: Obtain “valuative” (i.e., numerical) criteria to study test configurations. We will see that:

{Test configurations of (X,L)}↭ {Filtrations of R(X,L) := ⊕m≥0 H
0(X,mL)}↭ {Valuations in C(X)}

More precisely, the (divisorial) valuations we construct in C(X) will allow us to study the Donaldson-Futaki
invariant DF(X ,L ) using techniques from birational geometry (MMP) and intersection theory.

Recall 2.3. Given a vector space V , there is a bijection between linear actions of Gm on V and Z-gradings on
V : given an action of Gm on V , there is a weight decomposition V = ⊕λ∈ZVλ where

Vλ := {v ∈ V, a · v = aλv for all a ∈ Gm}.
Conversely, the Z-grading V = ⊕λ∈ZVλ allows us to define a · v :=

∑
aλvλ, for any v =

∑
vλ.

Definition 2.4. Let V be a finite-dimensional vector space (e.g., H0(X,mL)). A Z-filtration of V is a
collection of subspaces {Fλ}λ∈Z ⊆ V such that

1. Fλ+1V ⊆ FλV for all λ ∈ Z, i.e., it is a decreasing filtration,

2. FλV = 0 for all λ≫ 0, and

3. Fλ = V for all λ≪ 0.

The Rees algebra associated with the filtration F • is the finitely generated and torsion-free k[t]-module given
by Rees(F •) := ⊕λ∈ZF

λV t−λ, with k[t]-module structure given by t · (vt−λ) := vt−λ+1.

Construction 2.5 (Rees correspondence). There is a bijective correspondence between

{Gm-linearized vector bundles V → A1} ←→ {Z-filtrations of finite-dimensional vector spaces V }.

Indeed, given a vector space V and a Z-filtration F •V , we consider R := Rees(F •) and R̃ is a locally free sheaf
on A1 = Spec(k[t]), with the vector bundle V := V(R̃) → A1. Since R admits a Z-grading compatible with
the Z-grading of k[t], we have that V → A1 is a Gm-linearized vector bundle.

Given a Gm-linearized vector bundle V → A1, we consider the induced Gm action on its global sections and
the corresponding weight decomposition H0(A1,V ) =

⊕
λ∈Z H0(A1,V )λ.

2Known as the deformation to the normal cone in Intersection Theory (see Fulton §5.1 or Ravi Vakil’s Class 14).
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It is important to note that the Gm
∼= Spec(k[t, t−1])

def
= {t ̸= 0} ⊆ A1 action on the global sections is given by

the dual representation t ·σ(x) := σ(t−1 ·x) and thus t ∈ k[t] acts with weight −1 on the k[t]-module H0(A1,V ),
i.e., H0(A1,V )λ

·t−→ H0(A1,V )λ−1 is an injective k[t]-module morphism.

We can construct FλV geometrically as follows: Let V := V1 be the general fiber of V → A1 and

FλV := Im
(
H0(A1,V )λ

ev1−−→ V, s 7→ s(1)
)

where FλV ⊆ Fλ−1V since ·t is an injective morphism. Also, FλV = 0 (resp. FλV = V ) for λ ≫ 0 (resp.
λ≪ 0) since H0(A1,V ) is a finitely generated k[t]-module (resp. Im(H0(A1,V )λ

ev1−−→ V ) = V ).

Remark 2.6. The above construction has two consequences that will help us with calculations.

1. Since V → A1 is Gm-equivariant, we have VA1\{0} ∼= V ×(A1\{0}). On the other hand, since R⊗k[t]k[t]/

⟨t⟩ ∼= R/tR, we have V0
∼=
⊕

λ∈Z FλV/Fλ+1V
def
= gr•F V .

2. The inclusion H0(A1,V ) ∼=
⊕

λ∈Z FλV t−λ ↪→ H0(A1 \ {0},V ) ∼=
⊕

λ∈Z V t−λ implies that

s ∈ FλV ⇔ st−λ ∈ H0(A1,V ), where s ∈ H0(A1 \ {0},V ) is a Gm-invariant section such that
ev1(s) = s.

To use filtrations in the context of test configurations (X
π−→ A1,L ) of a polarized scheme (X,L), we consider

r ∈ N≥1 such that rL ∈ Pic(X ) and R := R(X, rL) :=
⊕

m∈N Rm with Rm := H0(X,mrL) a finite-
dimensional vector space. Let’s see that we can construct a graded Z-filtration F •R, that is, a Z-filtration
F •Rm for all m ∈ N such that FλRm · FµRn ⊆ Fλ+µFm+n. To do this, we note that:

1. By the projection formula, H0(X ,mrL ) ∼= H0(A1,V ) where V := π∗(L ⊗mr) is a Gm-linearized vector
bundle.

2. There is a canonical restriction morphism ev1 : H0(X ,mrL )→ H0(X ,mrL )t=1
∼= H0(X,mrL).

Thus, we can define Fλ
X ,L H0(X,mrL) := Im

(
H0(X ,mrL )λ

ev1−−→ H0(X,mrL)
)
, and this filtration is finitely

generated. More precisely, the Rees correspondence gives us an isomorphism of k[t]-modules

H0(X ,mrL ) =
⊕
λ∈Z

H0(X ,mrL )λ
≃−−−→

Rees

⊕
λ∈Z

Fλ H0(X,mrL)t−λ compatible with the grading, and then

⊕
n∈N

H0(X ,mrL ) ≃
⊕
n∈N

⊕
λ∈Z

Fλ
X ,L H0(X,mrL)

def
= Rees(F •

X ,LR(X, rL)),

where the latter is a finitely generated k[t]-algebra since L is relatively ample over A1.

Theorem 2.7. There is a correspondence3 between test configurations (X ,L ) of the polarized variety (X,L)
and graded Z-filtrations F • of R(X,L) for some r > 0.

Proof. By the previous discussion, it suffices to note that Rees(F •
X ,LR(X, rL)) induces the test configuration

X := Projn∈N

(⊕
n∈N

⊕
λ∈Z

Fλ
X ,L H0(X,mrL)

)
π−→ A1

where the morphism π is obtained since the degree m = 0 component of the Rees algebra is k[t]. By construction,
π is projective and L := 1

kOX (k) is a Q-ample line bundle for k ≫ 0. Moreover, the fact that there is a Gm-
equivariant isomorphism (X ,L )|A1\{0} ≃ (X,L)× (A1 × {0}) follows from the above Remark.

Corollary 2.8. Let (X ,L ) be a test configuration of the polarized variety (X,L). Then, if X is reduced and
irreducible, then X also is.

Proof. Let F •R, with R = R(X, rL) for r > 0, be the Z-filtration associated with the test configuration (X ,L )
such that X ≃ Proj(Rees(F •R)). The result follows directly from the fact that Rees(F •R) ⊆ R[t, t−1].

Fact: An analogous analysis, using the characterization of normality by Serre’s R1 and S2 conditions4, implies
that if X is normal and X0 is reduced, then X is normal.

3bijective, if we declare two filtrations equivalent if they coincide on H0(X,mL) for all m sufficiently divisible.
4See Stack Project, Tag 031S.
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3 Donaldson-Futaki Invariant
Definition 3.1. Consider V a finite-dimensional k-vector space with a Gm ↷ V action. The weight of the
action is defined as

wt(V ) =
∑
λ∈Z

λ dim (Vλ) ,

where V =
⊕

λ∈Z Vλ is the weight decomposition of V with Vλ := {v ∈ V |ξ · v = ξλv for all ξ ∈ Gm(k)}

Remark 3.2. If Gm acts on V , a vector space with dim(V ) = n, then wt(V ) = wt(det(V )) where det(V ) :=∧n
V , which has an induced Gm-action. If s1, . . . , sn ∈ V is a basis and λ1, . . . , λn ∈ Z are such that ξ · si =

ξλisi, then
ξ · s1 ∧ . . . ∧ sn = ξ

∑
i λis1 ∧ . . . ∧ sn

and thus wt(det(V )) = wt(V ).

From now on, we consider X a projective variety over C with dim(X) = n, and (X ,L ) a test configuration of
a polarized pair (X,L). For m ∈ N such that mL is a line bundle, we define

Nm := dimH0 (X0,mL0) and wm := wtH0 (X0,mL0)

It is known that the values Nm (the Hilbert polynomial of X0) are given by a polynomial with rational coefficients
of degree n. Furthermore, it is possible to prove that the values of wm are given by a rational polynomial of
degree n+ 1, so we have an expansion

wm

mNm
= F0 + F1m

−1 + F2m
−2 + . . .

for m > 0 sufficiently divisible.

Definition 3.3 (Futaki Invariant). The Donaldson-Futaki invariant of (X ,L ) is defined as

DF(X ,L ) := −2F1

The goal is to express this number in terms of intersection numbers, for which we will need to compactify
(X ,L ).

Construction 3.4 (Compactification). Given a test configuration (X ,L ) of (X,L), we can consider the Gm-
equivariant families (X ,L ) → A1 and (X,L) ×

(
P1\{0}

)
→
(
P1\{0}

)
, where the Gm action on (X,L) ×(

P1\{0}
)

corresponds to the product of the trivial action on (X,L) and the standard action on P1\{0}. We
have a Gm-equivariant isomorphism

(X \X0,L |X \X0
) ∼= (X,L)× (A1 \ {0})

(p, s) 7→ (a−1 · p, a−1 · s)× {a}

where a = π(p), and therefore this isomorphism allows us to glue the two previous families, obtaining the
compactification π̄ : (X ,L )→ P1. This compactification has the following properties:

1. the morphism π̄ : (X ,L )→ P1 is flat, proper, and Gm-equivariant.

2. the Q-line bundle L is π̄-ample and Gm-linearized.

3. the fiber over ∞ corresponds to
(
X ∞,L ∞

) ∼= (X,L).

Example 3.5. Consider the product test configuration X = P1 ×A1 induced by the action

t · [x : y] = [tdx : y]

for some d ∈ Z and L = OP1(1)×A1. In this case, we see that H0(P1,OP1(m)) = C[X,Y ]m with t·(xkym−k) =

tdkxkym−k, so wm =
(

m(m+1)
2

)
d, Nm = m+1, and DF(X ,L ) = 0 (and thus P1 is not K-stable). Additionally,

the previous construction tells us that
X = P(OP1 ⊕ OP1(d))

Lemma 3.6. Let Gm ↷ P1 be the action given by t · [x : y] = [tx : y]. Given a Gm-linearization of OP1(m),
then

wt (OP1(m)0)− wt (OP1(m)∞) = m

where 0 := [0 : 1] and ∞ := [1 : 0].
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Proposition 3.7. If (X ,L ) is a test configuration of (X,L) and n = dim(X), there exist ai, bi ∈ Q such that

Nm := dimH0 (X0,mL0) = a0m
n + a1m

n−1 + . . .+ an

wm := wtH0 (X0,mL0) = b0m
n+1 + b1m

n + . . .+ bn+1

for all m > 0 sufficiently divisible. Moreover,

a0 =
Ln

n!
and b0 =

L
n+1

(n+ 1)!

and if X is normal, also

a1 = −Ln−1 ·KX

2(n− 1)!
and b1 = −

L
n ·KX /P1

2n!

Proof. Serre’s vanishing theorem implies that

Hi(X t,mL t) = 0 ∀i > 0,m≫ 0,∀t ∈ P1

The cohomology base change theorem (see Theorem II.12.11 in Hartshorne’s book) implies that for an m such
that the above holds, we also have that

1. Riπ∗OX (mL ) = 0 for all i > 0.

2. π∗OX (mL ) is locally free.

3. π∗OX (mL )⊗ k(t)→ H0(Xt,mLt) is an isomorphism for all t ∈ P1.

Conditions (2) and (3) allow us to state that

Nm := dimH0 (X0,mL0) = dimH0 (X1,mL1) = dimH0(X,mL)

thus the statement about Nm and the formulas for a0, a1 are obtained from the Riemann-Roch theorem.
On the other hand, we can consider the line bundle det

(
π̄∗OX (mL )

)
, which is a Gm-linearized bundle over

P1. From condition (3), we deduce

wt
(
det
(
π̄∗OX (mL )

)
0

)
= wt

(
detH0 (X0,mL0)

)
= wm

and since Gm acts trivially on the fiber (X ,L )∞, we have wt
(
det
(
π̄∗OX (mL )

)
∞

)
= 0, and the previous

lemma implies
det
(
π̄∗OX (mL )

)
≃ OP1 (wm)

The Hirzebruch-Riemann-Roch theorem for vector bundles on curves, combined with conditions (1), (2), (3) and
Leray’s direct image theorem, allows us to make the following calculation

wm = deg (OP1 (wm)) = deg
(
π̄∗OX (mL )

)
= χ

(
P1,

(
π̄∗OX (mL )

)
− rk

(
π̄∗OX (mL )

)
= χ

(
P1,

(
π̄∗OX (mL )

))
−Nm

= χ
(
X ,OX (mL )

)
−Nm

The above allows us to conclude that the values wm are given by a polynomial with rational coefficients of degree
n + 1, so we only need to find the coefficients. The coefficient b0 is obtained directly from the Riemann-Roch
theorem, as deg(Nm) = n. To finish, note that

2Ln = 2L
n · OX (X1) = L

n · π∗OP1(2) = −L
n · π̄∗KP2

and from the Riemann-Roch theorem (assuming X is normal) we see that

wm =
L

n+1

(n+ 1)!
mn+1 −

L
n ·KX + 2Ln

2n!
mn +O(mn−1)

The last two calculations allow us to deduce b1.

The previous proposition immediately allows us to obtain the following formula for the Donaldson-Futaki in-
variant.
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Theorem 3.8 (Wang-Odaka). If (X ,L ) is a test configuration of (X,L) and X is normal, then

DF(X ,L ) =
L

n ·KX /P1

V
+ S̄

L
n+1

(n+ 1)V

where V = Ln and S = nV −1(−KX · Ln−1).

Proof. It suffices to note that DF(X ,L ) = 2(b0a1−b1a0)
a2
0

.

Since Wang-Odaka’s formula is valid for normal tests, the goal will be to normalize test configurations.

Construction 3.9. Let (X ,L ) be a test configuration of a polarized variety (X,L) with X normal. The
normalization of (X ,L ) is (X̃ , L̃ ) where ν : X̃ → X is the normalization and L̃ := ν∗L . Indeed, this
results in a test configuration since

Gm × X̃
∃! //

Id×ν

��

X̃

ν

��

Gm ×X // X

and L̃ is ample over A1 since ν is finite.
For m > 0 sufficiently divisible, we have N ′

m = H0(X,mL) = Nm. On the other hand, denoting X̃ =: X ′ for
simplicity, note that there is an exact sequence

0→ OX → ν∗OX ′ → F → 0 /⊗ OX (mL )

and we can calculate that

w′
m = wm + dimH0

(
X ,F ⊗ OX (mL )

)
≥ wm

Thus,

DF(X̃ , L̃ ) ≤ DF(X ,L )

We now state the definition of K-stability.

Definition 3.10. Let X be a normal, proper variety and L an ample line bundle on X. We say that (X,L) is:

1. K-semistable if and only if DF(X ,L ) ≥ 0 for all normal test configurations of (X,L).

2. K-polystable if and only if (X,L) is K-semistable and DF(X ,L ) = 0 only if (X ,L ) is a product test
configuration.

3. K-stable if and only if (X,L) is K-semistable and DF(X ,L ) > 0 when (X ,L ) is trivial.

In particular, (3)⇒ (2)⇒ (1).

Remark 3.11. It is important to understand how these notions of stability are related.

1. If there is a Gm ↷ X action and a Gm-linearization of L, then (X ,L ) is not K-stable. Indeed, the
action and its dual action give rise to two non-trivial test configurations (X ,L ), (X ′,L ′) that satisfy
DF(X ,L ) + DF (X ′,L ′) = 0, so one of these numbers is non-positive.

2. If X is a Fano variety over C, then:

(a) (X,−KX) is K-polystable if and only if X admits a Kähler-Einstein metric.

(b) (X,−KX) is K-stable if and only if X admits a Kähler-Einstein metric and Aut(X) is finite.

(c) (X,−KX) is K-semistable if and only if there exists a test configuration (X ,L ) of (X,−KX) such
that X0 is a (possibly singular) Fano variety that admits a Kähler-Einstein metric.
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4 K-stability and Singularities of MMP
Theorem 4.1 (Odaka). Let X be a projective normal variety and L ∈ Pic(X)Q ample. Then,

1. If KX ∼Q 0, then X is klt (resp. lc) ⇔ (X,L) is K-stable (resp. K-semistable).

2. If L = KX , then X is lc ⇔ (X,L) is K-stable ⇔ (X,L) is K-semistable.

We begin by modifying the intersection formula for the Donaldson-Futaki invariant. Let (X ,L ) be a normal
test configuration of (X,L). We have

Y
f

~~

g

##

X // X ×P1

where Y corresponds to the normalization of the graph of the birational map X 99K X ×P1.

Proposition 4.2. With the above notation,

DF(X ,L ) =
L

n · f∗
(
KY /X×P1 + g∗p∗1KX

)
V

+ S̄
L

n+1

(n+ 1)V

where S := nV −1 (−KX · Ln).

Proof. By Wang-Odaka’s formula, it suffices to prove that:

f∗
(
KY /X×P1 + g∗p∗1KX

)
= KX /P1 .

To do this, observe that:
KY /X×P1 + g∗p∗1KX = KY − g∗ (KX×P1 − p∗1KX)

= KY − g∗p∗2 (KP1)

= KY − f∗π∗ (KP1) .
Finally, f∗

(
KY /X×P1 + g∗p∗1KX

)
= f∗KY − f∗f

∗π∗ (KP1) = KX − π∗KP1 = KX /P1 .

Proposition 4.3.

1. If X is lc, then KY /X ×P is effective.

2. If X is klt, then KY /X ×P is effective and has support on Y0.

Proof. Let X be lc. Then (X × P1, X × 0) is lc. Indeed, if f : Y → X is a log resolution of X, then
KY/X =

∑
i aiEi for certain prime divisors Ei ⊂ Y such that ai ≥ −1. Now, fP1 : Y ×P1 → X ×P1 is a log

resolution of (X ×P1, X × 0) and

KY×P1/X×P1 − f∗
P1(X × 0) =

r∑
i=1

aiEi − Y × 0

has coefficients ≥ −1. Thus, the pair (X ×P1, X × 0) is lc. Moreover, since

KY /X×P1 − g∗(X × 0) = KY /X×P1 − Y0

has coefficients ≥ −1 and since Supp
(
KY /X×P1

)
⊂ Exc(g) = Y0, it follows that KY /X×P1 has coefficients ≥ 0.

If X is klt, note that no Ei ⊂ Exc(g) vanishes since a(Y0, X ×P1) > −1.

Proof of (⇒) in Theorem 4.1.1. Fix (X ,L ) a non-trivial test configuration. Suppose X is lc with KX ∼Q 0.
Then, the Donaldson-Futaki invariant reduces to

DF(X ,L ) =
L

n · f∗
(
KY /X×P1

)
V

.

Now, since f∗(KY /X×P1) is effective with Supp
(
f∗KY /X×P1

)
⊂X0,red and L |Y0 is ample, it follows from the

Nakai-Moishezon criterion that L
n · f∗

(
KY /X×P1

)
≥ 0, and hence X is K-semistable.

Now, suppose X is klt. Note that the condition codim
(
Exc

(
X 99K X×A

1
))
≥ 2 implies that (X ,L ) is trivial.

In this case, codim(Exc(X 99K X×A
1)) = 1, so f∗(KY /KX×P1) = X0 and f∗(KY /KX×P1) ̸= 0. Thus,

DF(X ,L ) > 0 when (X ,L ) is non-trivial. This completes the case when KX ∼Q 0.

Assume L = KX and that X is lc. Thus, the intersection formula results in:

DF(X ,L ) =
L

n · f∗
(
KY /X×P1

)
V

+

(
f∗L

n · g∗LA1

)
− n

n+1L
n+1

(n+ 1)V

By the same argument used earlier, the first term is ≥ 0. The fact that the second term is > 0 is a consequence
of the works of Boucksom-Hisamoto-Jonsson (2017) and uses non-Archimedean methods.
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Theorem 4.4 (Odaka-Xu). If X is a normal variety such that KX is Q-Cartier, then there exists a proper
birational morphism f : Y → X such that

1. (Y,∆Y := Exc(f) = E1 + . . .+ Ek) is lc.

2. KY +∆Y is f -ample.

The pair (Y,∆Y ) is known as the log canonical model of X, and it is unique up to isomorphism.

Example 4.5. Let X = {h = 0} ⊂ An+1 with an isolated singularity at the origin, i.e., h is homogeneous. The
blow-up of X at 0 gives a log resolution Y → X with KY/X ∼ (n − deg(h))F with F an exceptional divisor.
Thus, X is not lc when deg(h) > n+ 1, and then Y satisfies the conditions of Odaka-Xu’s theorem.

Theorem 4.6 (Odaka, 2013). Let X be a normal variety such that KX is Q-Cartier, and let L ∈ Pic(X)Q be
ample. If (X,L) is K-semistable, then it is lc.

Proof Idea. We will assume that X is not lc and show that there is a test configuration (X ,L ) such that
DF(X ,L ) < 0. Consider Y the log canonical model of X and the divisor E := KY/X +∆Y . Since E is nef, the
negativity lemma5 implies that −E is effective. Consider the ideal sheaf I := f∗OY (−mE) for m > 0 sufficiently
divisible, and Z ⊂ X the closed subscheme defined by the ideal I . Then6 Y ∼= BlZ(X), so E = Exc(f), and
hence KY/X = −E −∆Y has all its coefficients < −1. Given the closed Z ⊂ X above, consider now the ideal:

I = IZ×A1 + tNOX×A1 ⊂ OX×A1

where N ∈ N≥1, and we define X as the normalization of the blow-up of X ×A1 along I :

X := B̃lIX ×A1 g−→ X ×A1.

We can write I ·OX = OX (−F ) for some Cartier divisor F ∈ Pic(X ), and we then have that Lε := g∗LA1−εF
is ample over A1 for 0 < ε≪ 1 and thus (X ,Lε) is a test configuration of (X,L), which indeed satisfies that
KX /X×A1 has (for N sufficiently large) only negative coefficients.

We then claim that DF(X ,Lε) < 0 when 0 < ε≪ 1. Indeed, the intersection formula implies

DF (X ,Lε) =
L

n

ε ·KX /X×P1

V
+

L
n

ε g
∗p∗1KX

V
+

S̄

n+ 1

L
n+1

ε

V
,

resulting in DF (X ,Lε) being a polynomial in ε, and it suffices to analyze the lower order term. This last
analysis is done by Odaka, who proves that

DF (X ,Lε) = cεd + higher order terms,

for some rational number c < 0. This proves that for ε≪ 1, the test configuration (X ,L ) is destabilizing, and
hence (X,L) is not K-semistable.

We conclude this section by stating a version for klt singularities of Theorem 4.1.

Theorem 4.7 (Odaka).

1. If X is Fano and (X,−KX) is K-semistable, then X is klt.

2. If X is Calabi-Yau and (X,L) is K-semistable, then X is klt.

5See Lemma 3.39 in Birational Geometry of Algebraic Varieties by J. Kollár and S. Mori.
6For more details, see Lemma 1.13 in Boucksom-Hisamoto-Honsson (2017).
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5 Valuations and Test Configurations
Throughout this section, k will be an algebraically closed field with char(k) = 0.

Definition 5.1. Let K/k be a finitely generated field extension, i.e., its transcendence degree tr.degK/k < +∞
is finite. A valuation (with real values) is a function v : K× → R such that

1. v(fg) = v(f) + v(g) for all f, g ∈ K×, i.e., v : K× → (R,+) is a group homomorphism.

2. v(f + g) ≥ min{v(f), v(g)} for all f, g ∈ K×.

3. v|k× = 0.

Additionally, we define v(0) = +∞.

Context: Given a normal algebraic variety X over k, we consider K = K(X) the field of rational functions of
X, which is a finitely generated extension of k with tr.degK/k = dim(X). We denote by ValX the set of all
valuations of the extension K/k.

Remark 5.2. A valuation v of K/k has a list of associated invariants:

1. The valuation ring Ov := {f ∈ K | v(f) ≥ 0}, a local ring with maximal ideal mv := {f ∈ K | v(f) > 0}.

2. The residue field k(v) := Ov/mv.

3. The transcendence degree tr.deg(v) = tr.degk k(v).

4. The value group Γv := v(K×) ⊂ R and its rational rank rat. rk(v) := dimQ(Γv ⊗Z Q).

Example 5.3.

1. Let x ∈ X be a smooth point of a variety of dimension n. We define the order of vanishing of a regular
function f ∈ OX,x \ {0} at x as

ordx(f) := max{d ∈ N | f ∈ md
x}

We can extend this function to a valuation K× → R by defining

ordx(f/g) := ordx(f)− ordx(g).

In this case, we note that Γv = Z and therefore rat. rk(ordx) = 1.

2. Consider X = A2
x,y. Given f =

∑
a,b∈N ca,bx

ayb where ca,b ∈ k, we define the valuation v of K(x, y) by

v(f) = min{a+ b
√
2 | ca,b ̸= 0}

The values v(x) = 1, v(y) =
√
2 are the weights of the action.

3. Divisorial valuations. A divisor E over X corresponds to a proper, birrational morphism µ : Y → X
with Y normal and E ⊂ Y a prime divisor. In this case, the local ring OY,E of E is a discrete valuation
ring (DVR), whose associated valuation is

ordE : K× → Z, f 7→ ordE(µ
∗f)

i.e., it corresponds to computing the order of the pullback of regular functions along the subvariety E.

Definition 5.4 (Center of a valuation). If v ∈ ValX is a valuation, the center of v is the point ξ ∈ X such that
v ≥ 0 on OX,ξ and v > 0 on mξ. The center of the valuation v will be denoted cX(v).

Remark 5.5. The fact that cX(v) exists is equivalent to X → Spec(k) being proper, and if this center exists it
is unique if X is a separated variety (cf. valuative criterions of properness and separatedness).

Example 5.6.
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1. The valuation ordx associated with the order of vanishing at a smooth point x ∈ X is divisorial. Indeed,
ordx = ordF where F corresponds to the exceptional divisor of the blowup of X at x. We can perform this
calculation locally. Consider u1, . . . , un ∈ mx ⊂ OX,x local coordinates, and a function f =

∑
α∈Nn cαu

α ∈
OX,x where uα = uα1

1 · · ·uαn
n . By definition, d := ordx(f) = min{|α|, cα ̸= 0}. Consider the blowup

ε : X̃ := Blx X → X given by:

X̃
loc
= {(u, [y]) ∈ X ×Pn−1 | uiyj = ujyi ∀i, j = 1, . . . , n}

In the open set yi ̸= 0 we have coordinates uj = uiyj , and the exceptional divisor is given by F = {ui = 0}.
We compute that:

ε∗f(x1, . . . , xn) = ud
i f̃

and ui ∤ f̃ , so ordF (f) = d.

2. If E ⊂ X is a prime divisor of X with generic point ξ ∈ X, the valuation v = ordE is such that v ≥ 0 on
OX,ξ and v > 0 on its maximal ideal.

3. More generally, if E ⊂ Y
µ−→ X is a divisor over X then cX(v) = µ(E).

The example of divisorial valuations raises the question of how to characterize a valuation as divisorial. A
theorem by Zariski shows that this can be done numerically in terms of transcendence degree and rational rank.
The proof of this fact follows from Lemma 2.45 in the book Birational Geometry of Algebraic Varieties by J.
Kollár and S. Mori.

Theorem 5.7. Let v be a valuation of K. Then v is divisorial if and only if tr.deg(v) = n−1 and rat. rk(v) = 1.

Construction 5.8. Let v ∈ ValX . Given a line bundle L ∈ Pic(X) we can make sense of v(s) for sections
s ∈ H0(X,L):

In a neighborhood U of the center ξ = cX(v) we can trivialize L, i.e., fix an isomorphism L|U ∼= U × A1 in
which a local section s ∈ H0(U,L|U ) is represented by a regular function s : U → A1. In this way we can define
v(s) by evaluating this local representation, which is well-defined since two trivializations of L differ by a unit
a ∈ k×, and therefore if s′, s′′ are two local representations of a section s we have s′ = as′′ for some a ∈ k×,
and then v(s′) = v(as′) = v(s′′). Furthermore, v(s) > 0 if and only if s(ξ) = 0.

Similarly, we can evaluate v on a Cartier divisor D by considering the valuation of the local equation of D
around cX(v).

Since the function field is a birational invariant, any test configuration (X ,L ) of a polarized pair (X,L) has
function field k(X ) ∼= K(X)(t) since X \X0

∼= X × (A1 \ {0}). Thus, it is natural to study the valuations of
K(X)(t).

Theorem 5.9 (Generalized Abhyankar’s Inequality). Let k ⊂ K ′ ⊂ K be field extensions. Then

tr.deg(v) + rat · rk(v) ≤ tr.deg (v′) + rat. rk (v′) + tr.degK/K ′

where v′ = v|K′ is the restriction of the valuation v to K ′.

Proposition 5.10. Let v be a valuation of K(X)(t). If v is divisorial, its restriction r(v) = v|K(X) to K(X)
is divisorial or trivial.

Proof. Abhyankar’s inequality implies that

tr.deg(v) + rat. rk(v) ≤ tr.deg(r(v)) + rat. rk(r(v)) + 1 ≤ n+ 1

Since v is divisorial, in particular tr.deg(v) + rat. rk(v) = n+ 1, so

tr.deg(r(v)) + rat. rk(r(v)) = n

It is clear that rat. rk(r(v)) ≤ rat. rk(v) = 1, from which we conclude.

Remark 5.11. There is a natural action Gm ↷ K(X)(t) given by

a · f =
∑
λ∈Z

a−λfλt
λ

where f =
∑

λ∈Z fλt
λ with fλ ∈ K(X).
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Definition 5.12. A valuation of K(X)(t) is Gm-equivariant if v(f) = v(a · f) for every f ∈ K(X)(t), a ∈ Gm.
We denote by ValGm

X×A1 the set of equivariant valuations of X ×A1.

Example 5.13. Let w be a valuation of K(X) and s ∈ R≥0. We can define a valuation ws of K(X)(t) by

ws(f) := min{w(fλ) + λs}

where f =
∑

λ∈Z fλt
λ.

1. This valuation is Gm-equivariant, given that

w(a−λfλ) = w(a−λ) + w(fλ) = w(fλ) ∀a ∈ Gm

2. If w has a center in X then
cX×A1(ws) =

{
cX(w)× 0 if s > 0

cX(w)×A1 if s = 0

Note that there is a bijection between the valuations of X and the Gm-equivariant valuations of X ×A1, given
explicitly by

ValX ×R←→ ValGm

X×A1

(w, s) 7−→ ws

(v|K(X), v(t))←− [ v

Let (X ,L ) be a normal test configuration of (X,L). We have a birational map X → X ×A1, and defining
Y as the normalization of the graph of this map, we have a diagram

Y
f

~~

g

##

X // X ×A1

and given E ⊂X0 an irreducible component of X0, this induces a divisorial valuation ordE of the field K(X)(t),
whose restriction to K(X) will be denoted vE = r(ordE).

Proposition 5.14. For m > 0 sufficiently large

Fλ
X ,L H0(X,mL) =

⋂
E⊂X0

{
s ∈ H0(X,mL) | vE(s) +m ordE(D) ≥ λ ordE(t)

}
where D denotes the Q-divisor on Y supported on Y0 such that f∗L ∼= g∗(L×A1) +D.

Proof. Recall that the filtration of H0(X,mL) defined earlier corresponds by definition to

Fλ
X ,L H0(X,mL) =

{
s ∈ H0(X,mL) | t−λs̄ ∈ H0(X ,mL )

}
where s ∈ H0(X \X0,mL ) denotes the Gm-invariant section such that its restriction to t = 1 is s1 = s. At the
same time, it defines a rational section of LA1 = L ×A1, which we denote smL and smLA1 . Now, since X is
normal, st−λ ∈ H0(X ,L ) if and only if ordE(st−λ) ≥ 0 for all E irreducible components of X0. We calculate
that

ordE
(
st−λ

mL

)
= ordE (smL )− λ ordE(t) = ordE(sf∗mL )− λ ordE(t)

= ordE(sg∗mLA1 (D))− λ ordE(t)

= ordE(sg∗mLA1 ) +m ordE(D)− λ ordE(t)
def
= vE(s) +m ordE(D)− λ ordE(t)
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6 Numerical Criteria for K-Stability

Let (X,L) be a polarized normal projective variety of dim(X) = n, and let (X ,L )
π−→ A1 be a test configuration.

Recall 6.1. We saw that an irreducible component F ⊆ X0 defines a Gm-equivariant divisorial valuation
ordE ∈ ValGm

X×A1 , and we defined vF := ordF |K(X). Additionally, by normalizing the graph of the natural
rational map between X and the trivial test configuration, we obtain a diagram

Y
f

~~

g

##

X // X ×A1

where f∗L ≃ g∗LA1 +D with Supp(D) ⊆ Y0.

Thus, Fλ
X ,L H0(X,mL) =

⋂
E⊂X0

{s ∈ H0(X,mL), ordF (st
−λ)

def
= vF (s) +

=λ1 fixed︷ ︸︸ ︷
m ordF (D)−

=λ2 fixed︷ ︸︸ ︷
λ ordF (t) ≥ 0}.

Definition 6.2. Let v = ordE : K(X)∗ → Z be a divisorial valuation induced by a prime divisor E ⊆ Y
µ−→ X.

Then, v filters the algebra R := R(X,L)
def
=
⊕

m≥0 H
0(X,mL) by defining

Fλ
v H0(X,mL) := {s ∈ H0(X,mL), v(s) ≥ λ}.

Warning. The numerical characterization of Zariski divisorial valuations does not only consider surjective
valuations. More precisely, if v : K(X)∗ → Z is divisorial and Im(v) = cZ with c ∈ N≥1 then v = c ordE . Thus,
in the previous definition, v(s) ≥ λ if and only if ordE(s) ≥ ⌈λc ⌉.

Definition 6.3 (K. Fujita). We say that v = c ordE (or that the divisor E) is dreamy if F •
vR(X,L) is finitely

generated, i.e., the Rees algebra Rees(F •
vR) ∼=

⊕
m∈N, λ∈Z H0(Y,mµ∗L− ⌈λc ⌉E) is finitely generated.

Example 6.4 (BCHM, 2010). If Y is log-Fano (i.e., there exists ∆Y ≥ 0 effective with coefficients ≤ 1 such
that (Y,∆Y ) is klt7 and −(KY + ∆Y ) is ample), then every divisor E ⊆ Y is dreamy (Y is a Mori Dream
Space).

Theorem 6.5. Let (X,L) with X Fano klt and L = −KX . Then, there is a bijection between:

1. Normal test configurations (X ,L ) of (X,L) with L = −KX /A1 and X0 reduced and irreducible.

2. v : K(X)∗ → Z dreamy divisorial valuation.

Proof. (1) 7→ (2) is given by X0 7→ vX0

def
= ordX0 |K(X). Here, L ∼= −KX /A1 and the filtration induced

in R = R(X,L) is given by Fλ
X ,L H0(X,mL) = {s ∈ H0(X,mL), vX0

(s) + m ordX0
(D) ≥ λ ordX0

(t)} with
ordX0(D) := −A, ordX0(t)

def
= 1, i.e., Fλ

X ,L H0(X,mL) = Fλ+mA
vX0

H0(X,mL) and R(X ,L ) := Rees(F •
X ,LR) ∼=

Rees(F •
vX0

R) as k[t]-algebras. Since R(X ,L ) is finitely generated, vX0
is a dreamy valuation.

(2) 7→ (1) is given by v 7→X := ProjA1(Rees(F •
vR)). Here, X0 is given by the Proj of the algebra

Rees(F •
vR)⊗k[t] k[t]/⟨t⟩ ∼=

Rees(F •
vR)

t · Rees(F •
vR)

def
=

⊕
m∈N, λ∈Z

Fλ
v H0(X,mL)

Fλ+1
v H0(X,mL)

def
=

⊕
m∈N, λ∈Z

grλFv
H0(X,mL).

Given that if s, t ̸= 0 have degrees λ and µ, respectively, then st is nonzero of degree λ+ µ, we deduce that X0

is irreducible and reduced. In particular, since X is normal, X is irreducible and normal. Finally, the previous
construction implies that (X ,L ) satisfies vX0 = v.

Warning. In the previous context:

1. Since L = −KX /A1 and KA1 = 0 then D
def
= −g∗(LA1) + f∗L

def
= g∗(KX×A1) − f∗(KX ) ± KY

def
=

KY /X −KY /(X×A1). Then, if X̃0 = f∗X0 it follows that by definition of (log-)discrepancy

−A def
= ordX0

(D) =

def
=0︷ ︸︸ ︷

coeff
X̃0

(KY /X )− coeff
X̃0

(KY /(X×A1))
def
= −(AX×A1(X̃0)−1) = 1−(cAX(E)+

def
=1︷ ︸︸ ︷

ordX0
(t)),

and thus A = cAX(E)
def
= AX(vX0), where vX0 = c ordE is a divisorial valuation on X induced by X0.

2. Li and Xu (2014) proved that it suffices to check K-stability of Fano varieties by considering special test
configurations (X ,L ), i.e., those with L = −KX /A1 and X0 a klt Fano variety.

7i.e., the pair (Y,∆Y ) is dlt.
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Definition 6.6 (β-invariant). Let X be a klt Fano variety and r ∈ N≥1 such that −rKX is Cartier. For
v := c ordE : K(X)∗ → Z a divisorial valuation, we define the invariant β(v) := AX(v)− SX(v), where

SX(v) = lim sup
m→+∞

∑
λ∈Z λ dimgrλFv

H0(X,−mrKX)

mdimH0(X,−mrKX)

and where AX(v) = cAX(E), with AX(E) the log-discrepancy of the divisor E ⊆ Y
µ−→ X.

Proposition 6.7. Let v = c ordE (i.e., v = vX0

def
= ordX0

|K(X)) a dreamy valuation, and (X ,L ) the associated
test configuration, with X0 reduced and irreducible. Then, DF(X ,L ) = AX(v)−SX(v) = c(AX(E)−SX(E)).

Proof. Let (X ,L )
π−→ P1 be the associated projective test configuration. Considering L = −KX and L =

−KX /P1 the formula for the Donaldson-Futaki invariant using wm/mNm = F0 + F1m
−1 + · · · reduces to

DF(X ,L )
def
= −2F1 = − 1

(n+ 1)(−KX)n
(−KX /P1)

n+1 def
= − b0

a0

def
= −F0.

And the term F0 is simply calculated by observing that if v = vX0 = c ordE then

wm
def
= wtH0(X0,−mKX /A1 |X0

)
def
=
∑
λ∈Z

λ dimgrλFX ,L
H0(X,−mKX) =

∑
λ∈Z

λ dimgrλ+mA
Fv

H0(X,−mKX)

=
∑
λ∈Z

(λ−mA) dim grλFv
H0(X,−mKX) = −mAX(v) dimH0(X,−mKX)︸ ︷︷ ︸

def
=Nm

+
∑
λ∈Z

λ dimgrλFv
H0(X,−mKX)

and then −F0 = − lim supm→+∞
wm

mNm
= AX(v)− SX(v).

Theorem 6.8. If X is a klt Fano variety of dim(X) = n and E ⊆ Y
µ−→ X is a prime divisor over X then

SX(E) =
1

(−KX)n

∫ τ

0

vol(−µ∗KX − tE) dt where τ = sup{t ∈ R≥0, −µ∗KX − tE big divisor}.

Proof. Let v = ordE and assume that −KX is Cartier (to avoid writing −rKX throughout the proof). If
vλ := dimFλ

v H0(X,−mKX), we obtain a telescoping sum that calculates
∑

λ∈Z λ grλFv
H0(X,−mKX)∑

λ∈Z

λ(vλ − vλ+1) =

+∞∑
λ=0

vλ
def
=

+∞∑
λ=1

h0(Y,−mµ∗KX − λE)
def
=

∫ +∞

0

h0(Y,−mµ∗KX − ⌈t⌉E) dt,

and thus
∑

λ∈Z λ grλFv
H0(X,−mKX) = m

∫ +∞
0

h0(Y,−mµ∗KX − ⌈mt⌉E) dt. Then, SX(E) is given by

lim sup
m→+∞

∫ +∞

0

h0(Y,−mµ∗KX − ⌈mt⌉E)/(mn/n!)

h0(X,−mKX)/(mn/n!)
dt =

∫ +∞

0

vol(−µ∗KX − tE)

vol(−KX)
dt def

=

∫ τ

0

vol(−µ∗KX − tE)

(−KX)n
dt

by the Dominated Convergence Theorem.

The above can be summarized in the following fundamental result8, by Chi Li (2017) and Kento Fujita (2019).

Theorem 6.9 (Valuative Criterion for K-Stability). Let X be a klt Fano variety. Then, X is

K-stable (resp. K-semistable) ⇔ βX(E) > 0 (resp ≥ 0) for every (dreamy) divisor E over X.

Example 6.10. Let X := Blp(P
2)

ε−→ P2 with exceptional divisor E ⊆ X and let L be the pullback of a line.
Then, KX = ε∗KP2 + E = −3L+ E and we then calculate SX(E) as

SX(E) =
1

(−KX)2

∫ +∞

0

vol(−KX − tE) dt =
1

8

∫ τ

0

vol(3L− E − tE) d t =

∫ 2

0

(9− (1 + t)2) dt =
7

6
.

Since E and X are smooth, AX(E) = 1 and thus βX(E) = 1 − 7
6 = − 1

6 < 0. Hence, X is not K-semistable
(and therefore not K-polystable either) and thus Blp(P

2) does not admit Kähler-Einstein metrics.

Example 6.11 (K. Fujita, 2015). Let X be a K-semistable klt Fano variety and let p ∈ X be a smooth point.
Let ε : Y := Blp(X)→ X with exceptional divisor E ⊆ Y , where AX(E) = (n− 1) + 1 = n and where it holds9
that volY (ε

∗(−KX)− tE) ≥ (−KX)n − tn and thus βX(E) = AX(E)− SX(E) = n− SX(E) ≥ 0 is equivalent
to

n ≥ 1

(−KX)n

∫ ∞

0

volY (ε
∗(−KX)− tE) dt ≥ 1

(−KX)n

∫ n
√

(−KX)n

0

((−KX)n − tn) dt =
n

n+ 1
n
√
(−KX)n

and thus we have that X satisfies the inequality (−KX)n ≤ (n+ 1)n.

Remark 6.12. The inequality (−KX)n ≤ (n+ 1)n is true for every smooth Fano variety of dim(X) = n ≤ 3,
but X = P(OPn−1 ⊕OPn−1(n)) does not satisfy it for n ≥ 4 (and thus is not K-semistable). Furthermore, using
results by Yuchen Liu and Ziquan Zhuang (2018), it can be proved that in the K-semistable case the equality
(−KX)n = (n+ 1)n is equivalent to X ∼= Pn.

8Our calculations, along with the Li-Xu Theorem (2014), allow proving it for dreamy divisors. Moreover, Blum, Liu, Xu, and
Zhou proved in 2019 that if βX(E) < 0 for an arbitrary divisor E, then this inequality holds for a dreamy divisor.

9It suffices to compare dimensions in the exact sequence 0 → H0(X,OX(−mKX) · mmt
p ) → H0(X,−mKX) → OX/mmt

p → 0.
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7 Invariants α and δ

In this section, two different techniques for proving K-stability will be illustrated, for which the invariants α
and δ will be introduced.

Construction 7.1 (Fujita–Odaka 2016, Blum–Jonsson 2020). The valuative criterion for K-stability states
that a klt Fano variety is K-stable (resp. K-semistable) ⇔ δ(X) > 1 (resp. ≥ 1), where:

δ(X) := inf
E⊆Y

µ−→X

AX(E)

SX(E)
,

i.e., the infimum is taken over all divisors over X. The δ-invariant was originally defined by Fujita-Okada as
a certain limit of log-canonical thresholds of m-basis type divisors and then Blum-Jonsson proved that it
coincided with the previous expression, and additionally it satisfies:

n+ 1

n
α(X) ≤ δ(X) ≤ (n+ 1)α(X),

where n = dim(X) and where
α(X) = inf{lct(X,D), 0 ≤ D ∼Q −KX}

is the α-invariant of Tian, where

lct(X,D) = sup{c ∈ R≥0, (X, cD) is lc}.

Theorem 7.2 (Tian, 1987). Let X be a klt Fano variety of dimension n = dim(X). If

α(X) > (≥) n

n+ 1
then X is K-(semi)stable.

Example 7.3. We will use Tian’s criterion to prove that a degree 1 del Pezzo surface X is K-stable. Recall that
X ∼= Blp1,...,p8(P

2) is the blow-up of P2 at 8 points in general position10. Denoting ε : X → P2 the blow-up,
the canonical divisor corresponds to:

−KX = ε∗(−KP2)−
8∑

i=1

Ei

where Ei are the exceptional divisors. Thus, the linear system | − KX | corresponds to the linear system of
(strict transforms of) cubics passing through p1, . . . , p8.

Consider D ∼Q −KX (i.e., there exists m ∈ N such that mD ∼ (−KX) are linearly equivalent) and note that
D is reduced (i.e., it can only have multiplicities of 1). Indeed, if Supp(D) ∈ | −KX | this is directly true since
D ∼ Supp(D) (considering Supp(D) as a cycle). If Supp(D) /∈ | − KX |, since −KX defines a pencil, for any
x ∈ D there exists C ∈ | −KX | with x ∈ D. Then

D · C = (−KX)2 = 1

and therefore D must be reduced. This fact implies that it suffices to compute the lct when D is a curve. The
condition of passing through p1, . . . , p8 implies that D is irreducible, and then the possibilities are reduced to:

D smooth: lct(X,D)
def
= sup{c ∈ R≥0, 1− ordE(cD) ≥ 0} = 1

D nodal: lct(X,D) = 1

D cusp: lct(X,D) =
5

6

The case of the cusp is obtained by resolving the pair (A2, D) where D = {y2 − x3 = 0} ⊂ A2. If f : X̃ → X
is this resolution (which corresponds to 3 blow-ups) then

f∗(cD)−KX̃/X = cD̃ + (2c− 1)E1 + (3c− 2)E2 + (6c− 4)E3

and the lct is obtained from the condition 6c− 4 ≤ 1. In any case, α(X) > 2/3 and therefore X is K-stable.

Remark 7.4. Cheltsov (2008) shows that α(X) ≥ 2/3 for every del Pezzo surface of degree ≤ 4. Fujita (2019)
shows that α(X) = n

n+1 implies K-stability for smooth Fano varieties.

Using the language of filtrations, valuations, and Newton-Okounkov bodies, Abban and Zhuang (2022) prove
one of the most currently used methods to estimate the δ invariant via adjunction. The first observation is that
the valuative criterion allows extending the definition of K-stability to log Fano pairs.

10This means that there are no 3 collinear points, no 6 points lying on a conic, and there is no nodal or cuspidal cubic passing
through the 8 points such that one of them is exactly the singular point.
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Definition 7.5. Given a log Fano pair (X,D) of dimension n = dim(X) and a divisor E ⊂ Y
µ−→ X over X,

we define

δ(X,D)(E) =
A(X,D)(E)

S(X,D)(E)

where
S(X,D)(E) =

1

(−KX −D)n

∫ ∞

0

vol(µ∗(−KX −D)− tE) dt

We say that (X,D) is K-stable (resp. K-semistable) if

δ(X,D;V•) = inf{δ(X,D)(E), E ⊂ Y
µ−→ X divisor over X} > 1 (≥ 1).

Remark 7.6. If X is an algebraic variety and L ∈ Pic(X) is ample, V• := {Vm = H0(X,mL)}m≥0 is the
associated linear series, and if E ⊂ Y → X, the filtration (FEVm)t := {s ∈ Vm, ordE(s) ≥ mt} is defined and

vol(FEVm)t = lim
m→+∞

dim((FEVm)t)

mn/n!

Then

S(V•, E) :=
1

vol(V•)

∫ +∞

0

vol(FEVm)t dt = S(X,D)(E),

considering L = −KX −D.

Construction 7.7 (Abban-Zhuang, 2022). Let (X,∆) be a klt pair with ∆ ≥ 0, and let E ⊆ Y
µ−→ X be a

divisor over X of plt type, i.e., −E is µ-ample and (Y,∆Y + E) is a plt pair11, where ∆Y is defined by the
condition

KY +∆Y = µ∗(KX +∆) + (A(X,∆)(E)− 1)E.

If ∆E is the different of ∆Y on E (that is, KE +∆E = (KY +∆Y + E)|E) then

δZ(X,∆;V•) = inf
F, Z⊆cX(F )

A(X,∆)(F )

S(V•, F )
verifies δZ(X,∆;V•) ≥ min

{
A(X,∆)(E)

S(V•, E)
, inf
Z′

δZ′(E,∆E ;W
E
•,•)

}
with Z ′ ⊂ Y ranging over the subvarieties of Y such that µ(Z ′) = Z, and where

δZ′(E,∆E ;W
E
•,•) = inf

F, Z′⊆cE(F )

A(E,∆E)(F )

S(WE
•,•;F )

.

The term S(WE
•,•;F ) is obtained analogously to S(V•, E) but considering the refinement

WE
m,j := Im(H0(Y,−m(KX +∆)− jE)→ H0(E,−m(KE +∆E)− jE|E)).

In practice, this volume can be calculated or estimated using the notion of restricted volume defined by Lazarsfeld
and collaborators, which in turn is shown to be calculable using slices of Newton-Okounkov bodies. The latter,
in the case of surfaces, is calculated using the Zariski decomposition.

Remark 7.8. By definition, δ(X,D;V•) = infZ⊂X δZ(X,D;V•). In particular, the condition δp(X,D;V•) ≥ 1
for every p ∈ X implies that X is K-semistable.

From now on, X will be a surface and E ⊂ Y → X will be a smooth curve12 fixed on X. In this case, Z ′

(which is a subvariety in E) will be a point Z ′ = p such that p ∈ cE(F ), i.e., p = F . We need to calculate

δp(E,DE ,W
E
•,•) =

A(E,DE)(p)

S(WE
•,•; p)

=
1− ordp(DE)

S(WE
•,•; p)

where we have used that E is smooth. Let τ = sup{u ∈ R≥0, µ∗(−KX − D) − uE is pseudo-effective}, and
consider the Zariski decomposition

µ∗(−KX −D)− uE = P (u)︸ ︷︷ ︸
nef

+ N(u)︸ ︷︷ ︸
negative

.

We will assume that Supp(E) ⊈ N(u) for every u (for simplicity). In such a case, we have a flag {p} ⊂ E ⊂ Y ,
whose Newton-Okounkov body allows calculating the volume of the divisor13:

S(WE
•,•; p) =

dim(X)

vol(L)

∫ τ

0

∫ +∞

0

vol(P (u)|E−vp)dv du =
2

(−KX −D)2

∫ τ

0

∫ t(u)

0

max{ordp(P (u)|E)−v, 0}dv du

11Recall that (X,∆) is plt (resp. klt) if for AX,∆(E) > 0 (resp. AX,∆(E) > 0 and ⌊∆⌋ ≤ 0) for every divisor E over X.
12It suffices to consider smooth curves due to the plt hypothesis.
13See Corollary 1.109 in The Calabi Problem for Fano Threefolds, Araújo et al., 2023.
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Example 7.9. Using the Abban-Zhuang method, we will prove that every cubic surface is K-semistable. Let
X be a cubic surface, p ∈ X and E ∈ | −KX | an elliptic curve (smooth) such that p ∈ E and E|E = 3p. Here,
D = 0 and due to smoothness AX(E) = 1. We calculate

SX(E) =
1

(−KX)2

∫ +∞

0

vol(−KX − tE) dt =
1

(−KX)2

∫ 1

0

(−KX)2(1− t)2 dt =
1

3
.

Now note that

−KX − uE ∼ (1− u)(−KX) is nef ⇐⇒ (1− u)(−KX) is pseudo-effective ⇐⇒ 0 ≤ u ≤ 1.

In this case P (u) = (1− u)(−KX) and N(u) = 0, and so P (u)|E = 3(1− u)p, ordp(P (u)|E) = 3(1− u). Then,

S(WE
•,•; p) =

2

vol(L)

∫ τ

0

∫ t(u)

0

max{ordp(P (u)|E)− v, 0} dv du =
2

3

∫ 1

0

∫ 3(1−u)

0

(3(1− u)− v) dv du = 1.

We calculate that δp(E,DE ,W
E
•,•) = 1, and then

δp(X;V•) ≥ min

AX(E)

SX(E)
, δp(E, ∆E︸︷︷︸

=0

;WE
•,•)

 = min{3, 1} = 1.

The previous calculation concludes that X is K-semistable.

Remark 7.10. In fact, Abban-Zhuang verify that δ(X) ≥ 3/2, and every cubic surface is K-stable.
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